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Chapter 1

The Euclidean space R"

In Analysis 1 you have learned the fundamental concepts of differential and integral
calculus of real-valued functions in one real variable, known as Single Variable Calculus.
However, real-life phenomena often depend on a multitude of factors and it requires
more than just one variable to properly model such situations. This leads to the study
of the theory of differentiation and integration of functions in several variables, called
Multivariable Calculus. The mathematical stage on which the study of functions in
several variables unfolds is the n-dimensional Euclidean space R™.

Before defining the n-dimensional Euclidean space and its intrinsic topology, let us
recall some basic notions commonly used in analysis and calculus.

the natural numbers {1,2,3,4,...},

the integers, i.e., signed whole numbers {...,—2,—1,0,1,2,...},
the rational numbers § with a € Z and b € N,

the real numbers,

the complex numbers,

QOFONZ

An open interval is an interval that does not include its boundary points and is

bt
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denoted by parentheses. The open intervals are thus one of the forms

(a,b) ={r € R:a < x < b},
(—o0,b) ={zx € R:z < b},
(a,40) ={r €R:a <z},
(—o0, +o0) =R,
where a and b are real numbers with a < b. The interval (a,a) = ) is the empty set,
a degenerate interval. Open intervals are open sets in the topology of R.

A closed interval is an interval that includes all its boundary points and is denoted
by square brackets. Closed intervals take the form

la,b] ={z € R:a <z < b},
(—o0,b] ={zr e R:z < b},
[a,+00) ={z € R:a <z},

(—o0, +00) = R,
Closed intervals are closed sets in the topology of R. Note that the interval R =
(—o00, +00) is both open and closed at the same time.

A half-open interval is a finite interval that includes one endpoint but not the other.
It can be left-open or right-open, depending on which endpoint is excluded:

(a,b) ={x € R:a <z < b},
la,b) ={z € R:a < x < b},
Note that half-open intervals are neither open nor closed sets in the topology of R.
Intervals of the form [a,b], [a,b), (a,b], (a,b) for a,b € R with a < b are called

bounded intervals, whereas intervals like (—o0,b], (—o0,b), [a, +00), and (a,+00) are
unbounded intervals.

1.1 The vector space R"

Given a positive integer n, the set R™ is defined as the set of all ordered n-tuples
(x1,...,2,) of real numbers. It is called the standard Euclidean space of dimension n,
or simply the n-dimensional Fuclidean space.

We can represent an element of R” either as an n-tuple, which is the same as a row
vector with n entries,

x = (z1,...,2,)

or as a column vector with n entries

T
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Both representations are common and widely used in the literature. We will generally
use column vectors to denote elements of R” in calculations, and row vectors to denote
elements of R as input parameters of functions defined on R".

There are also different ways in which elements in R™ are denoted, the three most
common are

x, X, and Z.

In this text, we will predominantly use x for elements in R and x for elements in R"
for n > 2.
If n = 1 then R! = R corresponds to the real line.
0 x

| |
T T

If n = 2 then R? corresponds to the 2-dimensional plane. A point in R? is usually
written as either (z,%) or x = (21, 25) .

If n = 3 then R3 corresponds to the 3-dimensional space. A point in R? is usually
written as eitehr (z,y,2) or X = (21, 2, 73)".

x3
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The set R™ is an n-dimensional inner product vector space over the real numbers.
This means it is closed under addition, scalar multiplication, and endowed with an
inner product called the scalar product. The addition on R" is defined coordinate wise
by

x (1 T1+
xty=| |+ =] :
Tn Yn Tn + Yn
The multiplication of an element x € R™ by a scalar A € R is defined as

I )\.fL'l

T, ALy,

The way in which addition and multiplication on R™ interact is described by the
distributive law, which asserts that

AMx+y) = x4+ M\y. (Distributive Law)

The vector space R" is also equipped with a scalar product {.,.): R" x R" — R
defined as

(x,¥) = zy (1.1)

The scalar product satisfies the three following properties:
1. Positive-definiteness: (x,x) > 0 for all x € R"”, with equality only for x = 0.
2. Symmetry: (x,y) = (y,x) for all x,y € R™.
3. Bilinearity: (ax + fBy,z) = a(x,z) + ((y,z) for all x,y,z € R" and «, 5 € R.
In linear algebra, a vector x is also an n x 1 matrix. Its transpose, written x' =
(1,...,xy,), is therefore a 1 x n matrix, and we can interpret the scalar product of

two vectors x,y as the matrix product of x' and y:

Y1

(x,y) =x'.y= (T1,...,2,) | ¢
Yn

1.2 The Euclidean distance on R"

To be able to extend the analytical methods presented in Analysis 1 to the space R",
it is important to endow R"™ with a topological structure. On R we have used the
absolute value to define a distance d(x,y) = |x — y|, which was then used to define
notions such as convergence and continuity in R. We seek to generalize the absolute
value and the distance to the space R". To do so, we will introduce the concepts of a
norm and a metric.
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Definition 1.1 (The Euclidean norm on R™). The Fuclidean norm on R™ is the
function ||.||z : R — R defined by

Il = /) = (32 a:) (1.2

It measures the distance of the point x to the origin 0 = (0,...,0).

Observe that in one dimension, the Euclidean norm of a real number is the same
as the absolute value of that number. In general, the Euclidean norm satisfies the
following properties:

1. Non-negativity: ||x||» > 0 for all x € R", with equality if and only if x = 0.
2. Homogeneity: ||\ -x|2 = |\ - ||x]|2 for all A € R and x € R™.
3. Triangle inequality: [|x + y|l2 < [Ix[|2 + [ly|]2 for all x,y € R™.

One of the most important properties of the scalar product is the Cauchy-Schwarz
inequality, which says that

15, y) | < 1|2 [y ]]2 (Cauchy-Schwarz)
The Euclidean norm ||x||5 also corresponds to the length of a vector x. The scalar

product (x,y) measures the angle between the two vectors x and y: if we designate 6
as the angle between x and y, then

(x,y) = [Ix[[2[[y[|2 cos 6. (Angle Formula)

In particular if x and y are orthogonal vectors, i.e., § = +7/2, then (x,y) =0. As a
consequence, we obtain the famous Pythagorean theorem, which says that if x and y
are orthogonal then

I + Iz = Il + [y l2. (Pythagoras)

With the help of the Euclidean norm we can define a metric on R” called the
Euclidean distance.

Definition 1.2 (The Euclidean distance on R™). The Fuclidean distance on R™ is the
function d(.,.): R® x R" — [0, 00) given by

dx,y) =[x =yl = V(21— 00)° + ...+ (@0 — vm)*. (1.3)

The Euclidean distance captures the natural distance between two points in R”. It
satisfies the following three properties:

1. Non-negativity: d(x,y) > 0 for all x,y € R", with equality only when x =y.
2. Symmetry: d(x,y) = d(y, x).
3. Triangle inequality: d(x,y) < d(x,z) + d(y, z).
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1.3 The topology on R”

The Euclidean distance d(x,y) induces a topology on R” which underpins all analytical
considerations on R™. In particular, notions such as continuity, convergence, differ-
entiablility and integrability are all defined in terms of this topology. The building
blocks of the topology on R™ are the so-called open balls.

Definition 1.3 (Open Ball). Let a € R® and r > 0. The set
B(a,r) ={x e R":d(x,a) <r}
is called the open ball of radius r centered at a.

Open balls are the mathematical conceptualization of “nearness” and an important
use of open balls is to topologically distinguish distinct points: if x,y € R" and x # y
then we can find a sufficiently small open ball centered at x and another sufficiently
small open ball centered at y such that these two balls don’t touch.

Open balls are instances of open sets. An open set is a set with the property that
if x is a point in the set then all points that are sufficiently near to x also belong to
the set. The mathematically precise definition is as follows:

Definition 1.4 (Open set). A subset U C R™ is open if for any point x € U there
exists € > 0 such that the open ball B(x,¢) is contained in U.

The empty set () and the space R™ are open. Also, as was already mentioned, any
open ball B(a,r) is an open set.

Example 1.1 (Open Sets in R").
1. If a < b are real numbers then the interval

(a,b) ={x €eR:a <z <b}

is an open set. Indeed, if z € (a,b), simply take r = min{z — a,b — x}. Both these
numbers are strictly positive, since a < x < b, and so is their minimum. Then the
“l-dimensional ball” B(z,r) = {y € R : |x —y| < r} is a subset of (a,b). This
proves that (a, b) is an open set.

2. The infinite intervals (a, 00) and (—o0, b) are also open but the intervals

(a,b) ={x €eR:a <z <b} and [a,b] ={r €eR:a <z < b}

are not open sets.
3. The rectangle

(a,b) x (c,d) ={(r,y) ER*:a<x<b, c<y<d}
is an open set.
The antithetical notion to an open set is that of a closed set.

Definition 1.5 (Closed set). A subset C' C R™ is closed if its complement R"\C' is
open.
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The empty set () and the space R™ are the only sets that are both closed and open
at the same time. Intuitively, one should think of a closed set as a set that has no
“punctures” or “missing endpoints”, i.e., it includes all limiting values of points. For
instance, the punctured plane R*\{(0,0)} is not a closed set.

An example of a closed set is the closed ball.

Definition 1.6 (Closed Ball). Let a € R™ and r > 0. The set

B(a,r) ={x € R":d(x,a) <r}
is called the closed ball of radius r centered at a. It is a closed set.

Example 1.2 (Closed Sets in R").
1. The closed interval

[a,b) ={z € R:a <z <b}

is a closed set, because its complement R\[a,b] = (—00,a) U (b, 00) is an open set.
2. Infinite intervals with closed boundary [a, 00) and (—oo, b] are closed sets.
. Halfopen intervals such as [a,b) or (a,b] are neither closed nor open sets.
4. Any set consisting of only finitely many points is a closed set.

w

The following two propositions describe how open and closed sets behave under
basic set manipulations such as unions, intersections, and set differences.

Proposition 1.1.

o IfU CR™isopen and C C R" is closed then U\C' is open.
o IfC CR™is closed and U C R™ is open then C\U is closed.

Proposition 1.2.

o IfUy,..., U CR"™ are open then Uy U ... U U, and Uy N ... N U, are open.
o IfCY,...,Cy CR"™ are closed then C; U ... UC), and CiN...NC, are closed.

To better grasp the difference between open sets and closed sets, we introduce the
concept of interior points, exterior points, and boundary points.

Definition 1.7 (Interior, Exterior, Boundary Points). Let S be a subset of R” and x
a point in R"™.
(i) We call x an interior point of S if there exists 7 > 0 such that the ball B(x,r)
is contained in S.
(ii) We call x an ezterior point of S if there exists r > 0 such that the ball B(x, )
has empty intersection with S.
(iii) We call x a boundary point of S if it is neither an interior point nor an exterior
point for S. Equivalently, x is a boundary point of S if for every r» > 0 the ball
B(x,7) has non-empty intersection with S without being entirely contained in

S.

Note that every point is either interior, exterior or on the boundary in relationship
to a set S.
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(€]
S Boundary Point
Exterior Point
@
Interior Point

Figure 1.1: Illustration of the difference between interior, exterior and boundary points
of a set S.

Definition 1.8 (Interior). The set of all interior points of a set .S is called the interior
of S and it is denoted by S.

Definition 1.9 (Boundary). The set of all boundary points of a set S is called the
boundary of S and we use 05 to denote it.

Definition 1.10 (Closure). The closure of S, denoted by S, is the set of points x € R”
with the property that for all » > 0 one has

B(x,r) NS # 0.

Equivalently, the closure of S is the union of all its interior points and all its boundary
points.

S S S os

Figure 1.2: The interior, closure and boundary sets of a set S.

Clearly, we have the set inclusions SCSCS To summarize, the closure of S
is S plus its boundary, its interior is S minus its boundary, and the boundary is the
closure minus the interior:

S=5\0S S=5UdS, and S =25\S.

Proposition 1.3. Let S C R"™. The interior S is the largest open set contained inside
of S. The closure S is the smallest closed set that has S as a subset.
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Corollary 1.1. A set is open if and only if it is equal to its interior. On the other
hand, a set is closed if and only if it is equal to its closure, which is the same as saying
that it contains all its boundary points.

Example 1.3 (Closure, Interior, Boundary).

1. The sets (0, 1), [0,1], [0,1), and (0, 1] all have the same closure, interior, and bound-
ary: the closure is [0, 1], the interior is (0, 1), and the boundary consists of the two
points 0 and 1.

2. The sets

{(z,y) e R* : 2* + ¢ < 1} and {(z,y) e R*: 2% + > < 1}

both have the same closure, interior, and boundary: the closure is the disc of
equation 22 + y? < 1, the interior is the disc of equation 22 + y? < 1, and the
boundary is the circle of equation 2% + y? = 1.

3. The set

U={(z,y) €eR*: |y| <2”}

describes the region between two parabolas touching at the origin, shown in Fig. 1.3.
The set is open, so U = U. The closure of U is given by

U ={(z,y) e R?: |y| < 2°}.

In particular, the closure contains the point (0, 0).

Figure 1.3: The origin belongs to the closure of the shaded region.

4. The unit ball is open in R™ and is defined by
By =B(0,1)={x e R": x|, < 1}

Its boundary is the sphere 0B; = {x € R" : ||x]||s = 1}.
5. Let f: R — R be a continuous function. The set

G ={(z, f(x)) eR*: 2 € R}



14 CHAPTER 1. THE EUCLIDEAN SPACE R"

is known as the graph of f and represents a curve in R%. We have G ¢ = 0. Therefore
Gy = 0Gy. The closed graph theorem says that graph G 7 is a closed set in R? if f
is a continuous function.

6. Let B={x € R?:||x|ls <1} and I =[0,5]. The set S defined by

S:BXI:{XGR?’:xf+x§<1and0<x3<5}
is a cylinder. The set S is neither closed nor open. The boundary of S is given by
0S=0Bx1UBxdl,
E E

where
El:{X€R3:x%+x§:1and0<x3<5},
Egz{xeR?’:x%+x§<1andx3€{0,5}}.

Definition 1.11 (Neighborhood of a point in R"). Let x € R” and U C R". If x is
an interior point of U then U is called a neighborhood of x.

1.4 Sequences in R"

Limits of sequences and limits of functions are fundamental notions in calculus, as you
already have seen in Analysis 1. Let us extend these principles to higher dimensions.
We write N = {1,2,3,...} for the set of natural numbers.

Definition 1.12 (Sequences in R™). A sequence of elements of R™ is a function k +— x;
that associates to every natural number k& € N an element x;, € R". We write (X), oy
to denote a sequence in R".

Although (x),cy is by definition a sequence of n-tuples, we can also think of it as
an n-tuple of sequences by considering each coordinate as an individual sequence,

<x1:k)keN
(%K) per = :

(@) pen
Definition 1.13 (Convergent sequence). A sequence (Xj), oy of points in R" converges

to a point x € R"™ if for every € > 0 there exists N > 1 such that when & > N, then
d (xj,x) < e. In this case we call x the limit of (x;), .y and write
lim x, = x.
k——+o00

Note that not every sequence has a limit, but if a sequence does then this limit is
unique. Sequences that possess a limit are called convergent, whereas sequences that
don’t possess one are called divergent.

It follows from Definition 1.13 that a sequence (xj), .y converges to x if and only
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if the sequence of distances d (x, x) converges to 0, i.e.,

lim x, =x <= lim d(x,x)=0.
k—+o0 k—+o0
Convergence is also observed coordinate wise: A sequence (xXy),.y converges to x if
and only if each coordinate of (x),.y converges to the respective coordinate of x.
More precisely, if

(1) e x1
(%8) e = : and  x =
(@ k) e Ln
then
lim x, =x <= lim z;,=a; foralli=1,...,n.
i, ) ) )
k——+o0 k—4o00

Example 1.4 (Convergent and divergent sequences in R™).

1. The sequence (X;),cy given by

ok
_ _k_
Xk = Rl
k2—k—k
converges as k — +00 to the limit
0
x=1(11,
-2
because limy_, o0 €% = 0, limy_, 4 oo kiﬂ =1, and limy_, m = —2.

2. The sequence (Xy),cy given by

0
Xk == 1_(_1)k:
2

diverges because it diverges in the second coordinate.

The following properties describe the arithmetic operations of sequences in the n-
dimensional Euclidean space and tell us that limits cooperate nicely with the vector
space structure of R".

Properties of limits of sequences. Let (x;),.y and (y&),cy be sequences in R"
and let (Ag)gen be a sequence in R.

1. Addition of sequences: If (X;),cy and (yi),ey Poth converge then so does
(Xk + Yk)pey and

lim x, +y,= lim x,+ lim )
k—+o0 k Yk k—+o0 k k—)-i—ooyk

2. Multiplication of sequences: If (x;),.y and (Ag),cy both converge then so
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does (AxXp),en and

3. Inner product of sequences: If (x;),.y and (y),cy both converge then so

does ((Xi, Y))pen and

lim (xg, yx) = <k£1>m Xp, lim yk>.

k—4o00 +o0 k—+o0

Definition 1.14 (Cauchy sequences). A sequence (xj), oy is a Cauchy sequence if for
every € > 0 there exists N > 1 such that k,l > N implies d (xx,%;) < €.

Theorem 1.1. Every convergent sequence (Xj),oy is a Cauchy sequence and every
Cauchy sequence is convergent.

Proposition 1.4. Let S C R" be a non-empty set and suppose x € 0S is a boundary
point of S. Then there exists a sequence of elements in S, X1, Xz, X3,... € S, such that

lim x; = x.
k—+o0

The following example provides an illustration of the content of Proposition 1.4.
Example 1.5. Consider the open ball of radius 5 centered at the origin in R2,
B(0,5) = {x € R?: ||x||]s < 5} = {(z,y) € R? : 2® + 3> < 25}.
The boundary of B((0,0),5) is the circle of radius 5 centered at the origin, i.e.,
0B(0,5) = {x € R*: ||x|s =5} = {(z,y) € R? : 2* + y*> = 25}.
Any point x € 0B(0,5) of this circle takes the form

5cost
X = (581110) , for some 6 € [0, 27).

We can define a sequence

and note that limy_,, . X = X. So we see that x;,x5,X3,... is a sequence of points
inside the open ball B(0,5) converging to the point x on the border .

Proposition 1.5. Let S C R" be a non-empty subset of R" and let (x),.y be a
sequence of elements in S. If (X ) pey converges then the limit limy_, o X = X must
belong to S, the closure of S.

ke

Example 1.6. Consider the “halfopen” rectangle
S =1[0,1] x [0,1).
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This is not a closed set, because the point (%, 1), for example, is in the boundary 95
but not in S itself. Moreover, the sequence

.66 00

is a sequence of points in the interior of S that converge to the point (%, 1), which is
not part of S, but it is part of the closure of S.

Definition 1.15 (Bounded set). A subset £ C R" is bounded if it is contained in a
ball of finite radius centered at the origin:

E C B(0,R) for some R < 0.

Note that a closed set need not be bounded. For instance, the interval [0, 00) is
closed, but it is not a bounded.

Definition 1.16 (Compact set). A subset C' C R"™ is compact if it is closed and
bounded.

Compactness is the basic "finiteness criterion" for subsets of R”. An important char-
acterization of compact sets in Euclidean spaces is given by the Bolzano-Weierstrass
theorem. Before we can state this theorem, we need to recall what is a subsequence.

Definition 1.17 (Subsequence). A subsequence of a sequence (Xj)ren is any sequence
of the form (xy, )ien, where (k;);en is a strictly increasing sequence of positive integers.

If a sequence converges then any subsequence of it also converges to the same limit.

Theorem 1.2 (Bolzano-Weierstrass theorem in R"). Let C' C R" be compact. Any
sequence (Xy)gen of elements in C' possesses a convergent subsequence (X, );eny whose
limit is in C.

Definition 1.18 (Bounded sequences in R™). A sequence (xj), oy is bounded if there
exists a constant C' > 0 such that ||xx||, < C for any k € N.

Note that every convergent sequence is a bounded sequence, but the opposite is
in general not true. For example, the sequence x; = (—1)* is bounded and does not
converge. The following is an immediate corollary of the Bolzano-Weierstrass theorem.

Corollary 1.2. Each bounded sequence (Xj),.y in R™ has a convergent subsequence
(%, )ien-






Chapter 2

Real-valued functions in R"

Multivariable calculus, also known as multivariate calculus, is the extension of calculus
in one variable to calculus with functions of several variables. We start by defining
real-valued functions in more than one variable.

2.1 Definition

Definition 2.1 (Real-valued function on £ C R™). Let E be a non-empty subset of
R™. A function f: F — R that assigns to every element x € E a unique real number
y = f(x) is called a real-valued function on E.

Given a function f: F — R, the domain of f is E, denoted dom(f) or dom f. In
theory, the domain should always be a part of the definition of the function rather
than a property of it, but in practice it is often the case that the domain is inferred
by the description of the function (see Examples 2.1 and 2.3 below).

The image (sometimes also called the range) of a function f is the set of all the
output values that f produces. We denote it by Im(f) and it is formally defined as

Im(f) ={f(x):xe F} ={y € R:3x € £ with f(x) =y}

Example 2.1. Let us find and sketch the domain of the function

vr+y+1

flzy) = @1

The expression for f makes sense if the denominator is not 0 and the quantity under
the square root sign is nonnegative. So the domain of f is:

dom(f) ={(z,y) ER*: 2 +y+1>0,z#1}.

The inequality x +y+1 > 0, or y > —x — 1, describes the points that lie on or above
the line y = —x — 1, while x # 1 means that the points on the line x = 1 must be
excluded from the domain. See Fig. 2.1 for a sketch of this region.

19
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)
vz =1
r+y+1=0 1+
; x
—1 \ :
E dom(f)
~1 \
Figure 2.1: The domain of the function f(x,y) = V(fctyf)rl

The relationship between the domain and the image of a function is described by
its graph. We use G(f) to denote the graph of a function f: £ — R and it is given by

G(f) = {(ch‘x)) 'x € D} C R,

Note that the graph of f is a subset of R™"!. More precisely, the graph is the
hypersurface in R"*! corresponding to the set of all points (1, ..., Ty, Tpe1) € R
that satisfy the equation

Tpr1 = [(T1,...,2p).

Example 2.2. Consider the equation x + y = z; as you learned in linear algebra, the
solutions to this equation describe a plane in R3. Now, compare this with the function
f(z,y) = =z + y, a real-valued function in two variables. By definition, the graph of
f(x,y) consists of points (z,y,2) € R® where z = f(z,y). For f(x,y) = x + y, this
gives the equation of the plane x +y = z. Thus, the graph of f(x,y) = z+y is exactly
the plane in R?® determined by the equation x +y = z.

Example 2.2 connects what you studied in linear algebra, where you worked with
linear equations like x + y = z, to what you're learning now in multivariable calculus.
But there’s more! With multivariable functions, you can describe not just planes, but
much more complex geometric surfaces, as this next example illustrates.

Example 2.3. Consider the real-valued function f(z,y) = /1 — 2% — 32, which is a
function in 2 variables. The natural domain of this function is dom(f) = {(z,y) €

R? : 22 + y? < 1}, which is the closed disc of radius 1 centered at the origin. The
image of f is Im(f) = [0,1] and the graph G(f) = {(z,y,2) € D xR,z = f(z,9)}

coincides with the set of solutions to the equations
P +y*+22=1 and z>0.

In other words, the graph of the function is a semi-sphere, see Fig. 2.2 below.
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Figure 2.2: Graph of the function f(z,y) = /1 — 22 — y°.

Example 2.4. In physics, the functions f: R®" — R are often called scalar fields.
The gravitational potential of a mass or the electric potential of an electric charge are
examples of scalar fields:

k

B

¢:RN\{0} = R, o(x)

for a real constant k. In mechanics, we often consider systems where the energy is
conserved (Hamiltonian systems). For the movement of a particle of mass m in space,
subject to the potential V(x), its energy is a real-valued function of its momentum
p = mv here v is the velocity and x the position in space:

2
E:R"xR"—> R, E(p,x) = Ipl; + V(x).

2m

The movement follows the lines at which the energy FE is constant. These lines are
called “contour lines” and they are special cases of so-called level sets, which we define
and discuss next.

2.2 Level Sets
Definition 2.2 (Level set). Let f: E — R, E C R*(E # (). Given a real number
c € Im(f), we call the set

L(f)={x€D: f(x)=c} = f"'({c})
the level set of f at height c. If ¢ ¢ Im(f), then L.(f) = 0.
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45

level
curve

Sl y) =20

Figure 2.3: The figure displays the graph of a function in 2 variables together with an
illustration of its level curves in the zy-plane. One can also think of level curves as the
projection of the horizontal traces onto the xy-plane, where a horizontal trace is a line
formed by intersecting the graph of the function with a plane parallel to the xy-plane.

Level sets of functions in 2 variables f: R? — R are sometimes also called level
curves (or contour lines). It represents all the points where f has 'height” c¢. A
collection of contour lines is called a contour map. Contour maps are very helpful for
visualizing functions, and they are most descriptive if the level curves are drawn for

equally spaced heights, see Fig. 2.4.

KEY

Precipitation (cm/yr)
[ under2s [l sotot00 M 200to0 250
[ 25t0 50 [ 100t0200 [l Over250

Figure 2.4: Contour map of participation as a function in two variables, the longitude
and latitude coordinates on earth.

In summary, we now have learned of two ways of graphically representing a real-
valued functions in two variables. The first way is by its graph, which is a hypersurface
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in R3, and the second is by a contour map, the projection of its contour lines onto the
plane R?. In Fig. 2.5 below you can see these two methods juxtaposed.

(2-XMB+B7Y -y A3 +XMA+BTXNAYA2) "eXp(-X"2-y 12" 1.2)

RN

\N&;&R“
SN

TN
MR

iy
10K \
£SO
% ““u“:,;,,; N N
5 SN L TR
70K S X SO
7 ERIRSSSSSS W
7 .

s
5577
N
2

Figure 2.5: Depiction of graph (left) and contour diagram (right) of the same function
in 2 variables.

Example 2.5. Let f(z,y) = %, whose domain is dom(f) = {(z,y) € R? : y >
2?}. Notice that dom(f) is open and unbounded.

xy—1

25p

fix,y) =

N

m

Level Sets

L1

=N W

® Point (1,1)
——- Envelope x2 =y

Figure 2.6: The figure displays a series of level curves for the function f(z,y) = \;—%
y—x

passing through the point (1,1). As we will explore subsequently, this indicates that
the limit of f(x,y) as (x,y) approaches (1,1) is not well-defined.
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2.3 Limits of functions

Definition 2.3. Let f: F — R with £ C R". We say that f is defined in a neighbor-
hood of xo € R™ if xq is an interior point of F U {xq}. That is, there exists 0 > 0 such
that B(xg,9) € E U {xo}.

In the above definition, it is possible that xo ¢ F. In other words, it is possible
for a function to be defined in a neighborhood of x; € R™ without being defined at xq
itself.

Example 2.6. Consider the function f(x) = ﬁ whose domain equals dom(f) =

{x € R": ||x]| # 0} = R"\{0}. Although this function is not defined at 0, it is defined
in a neighborhood of 0.

We are concerned with points where the function is defined in a neighborhood
around the point, because this is necessary to properly define the limit of a function at
that point. If the function is not defined in the neighborhood of a point, then it is not
always possible to talk about the limit of the function at that point without running
into mathematical contradictions.

Definition 2.4 (Limit of a function). Let E be a subset of R", f: E — R a function
with domain E and assume f is defined in a neighborhood of the point x, € R". We
say that f has a limit [ € R at xy and write

lim f(x)=1,

X—X0

if for all € > 0 there exists § > 0 such that for all x € F,

0<d(x,x0) <0 = |f(x)—=I|<e

Note that the limit of a function at a point does not always exist. But if it does
exists then it is unique, which means that a function has at most one limit at a given
point.

Example 2.7. Let f: R? — R be the function defined by

o Ly if (2,y) # (0,0)
f(z,y) {0 if (z,y) = (0,0)

Let’s calculate its limit as (x,y) approaches (0,0). We will learn several different
methods of finding the limit of a function at a point (see, for example, the Squeeze
Theorem below), but the most standard method consists of simply verifying Defini-
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tion 2.4. Given the relation 0 < /22 + y?, we have

|z + y| 2% — 2y + 9| z? + |z||y| + y*
|f(z,y)| = e < (lz] + [y]) e
< (2] + |ny2 + |zlly] + v* + 2(|z| — |y])?
~ :L-2_|_y2
_ 2 2
(] + Iyl)ruy2

3.2 3,2
527+ 35y
<2\/!L’27—|—’y22$2_'_;2:3\/m:3”(1‘7y)”2-

This shows that as long as § < £ we have d((z,y),(0,0)) < = |[f(z,y)| < e

According to Definition 2.4, this means exactly that lim, )0 f(z,y) = 0.

Proposition 2.1 (Characterization of limits by sequences). Let E C R" xq € R"
and assume f: E — R defined on a neighbourhood of xq, and | € R". The following
statements are equivalent:

1 limy sy, f(x) =L
2. limy oo f(xk) = [ for every sequence (Xi)ken in E\{xo} with limy_, X; = Xo.

Properties of limits of functions. Assume lim,_,,, f(x) and limy_,,, g(x) exist.
1. Linear combinations: For constants «, § € R, we have

Jim (af (x) + By(x)) = o Jimg Fx)) +5( Jim 9(x))

X—X0

2. Products:
Jim (f(x) - g(x)) = (Jim f(x)) - (Jlim g(x)).
3. Quotients: If limy ,y, g(x) # 0, then

<f (X)) iy f(x)

lim ( —/—=% | = = .
limy_yx, 9(X)

X—X0

9(x)

4. Compositions: Let a = (ay,...,a,) € R" and b = (by,...,b,) € R" be given. If
limy,a f(x) exists, and ¢g; : R — R are functions such that lim,_,;, g;(z) = a; for
each 7, then

)1(1_I>Hb f(gl(x1)792<$2)7 ce ,gn(l‘n)) = lim f(X)

X—a
Example 2.8. Let us calculate

1+ 2y
1m .
(zy)—=(-34) 1 — zy

Since lim(, ) (—34) * = —3 and lim(, ), (—34) ¥y = 4, it follows from properties 1 and 2
of limits of functions that

lim 1+xy:1+< lim x)( lim y>:1+(—3)~4:—11.
@) ( 9

(x7y)_>(_374) _>(_374) a:,y)—>(—3,
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Similarly, we obtain lim(, 341 — 2y = 13. Since the limit of the numerator
and denominator exist and the denominator does not converge to 0, it follows from
property 3 of limits of functions that

I+zy lim, )~ (—3,4) 1 + 2y - 11

lim : = .
(zy)—(-34) 1 — 2y limy g ) (—34) 1 — 2y 13

2.4 Techniques for finding limits of functions

Example 2.9 (The problem with limits in several variables). Let f: R? — R? be a
function in two variables; we would like to determine the limit

lim z,1).
(=,y)—(0,0) fz.y)

A (naive) idea is to compute the two iterated limits:

limlim f(z,y)  or  limlim f(z,y).
If these two limits exist and coincide, one might then be led to believe that the limit of
the function at (0,0) is equal to 0. However, this is note true! For example, consider
the function

i (2,y) # (0,0),

fy) = {0, it (z,) = (0,0).

For this particular function, we find that the iterated limits are:
xy i 0

Vi o f(, 9) = limy iy 255 = 1 g = O
o Cewy o 0
i o y) = i e T o O

However, instead having the two variables approach 0 one after the other, we can have
them approach zero simultaneously, for example along the diagonal x = y. In this
case, setting both x and y equal to ¢ and letting ¢ go to zero, we obtain

: .ttt 11

g /(00 =i =l = o
which yields a different result. Since we can approach (0,0) in two different ways and
obtain different results, it means that the limit does not exist.
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A next idea would be to test all possible directions,
lim f(at, 5t),

with a, 8 € R not both zero (thus covering all lines of equation Sx — ay = 0, which
are all lines passing through 0). If all the limits along all the lines passing through 0
exist and coincide, can we conclude that the limit exists? The answer is still no! This
is because we might obtain a different result when following a trajectory that is not a
straight line.

N\
—>O/

TN

For example, if f: R? — R is defined by

AL, if (2,y) # (0,0),

flz,y) = {07 if (z,y) = (0,0).

then for any «, f € R, we have
) ) 0562753
Hn flat, 5t) =l g
If « =0, then § # 0 and we obtain 0. Otherwise,
aB?t 0

g S, Bt) =l o i = av0 -

We obtain 0 in all directions. However,

Again, this means that the limit does not exist.
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2.4.1 The squeeze theorem

Theorem 2.1 (Squeeze theorem - théoreme des gendarmes). Let £ C R"™, and func-
tions f,g,h : E — R be defined on a neighborhood of x, € R". If

Jimy, 9(x) = lim hlx) =1
and there exists € > 0 such that for all x € F,

0<d(x,x9) <e = g(x) < f(x) < h(x)
then

i, ) =1

Example 2.10. Consider f: R*\{(0,0)} — R defined by

oy
f(z,y) = RORTE
Let’s discuss the limit
lim z,Y).
(z,9)—(0,0) f(@.y)
We can estimate
ohy? ey
0< flz,y) = =y’

X
1'4 + y12 1.4

So if we define
g(z,y)=0 and  h(z,y) =y’

then g(z,y) < f(z,y) < h(z,y). Since lim, ) 0.0 9(2,y) = lim( )00 Mz, y) =0,
it follows from the Squeeze Theorem that lim, ) 0,0) f(2,y) = 0.

2.4.2 Using Polar coordinates

Polar coordinates are useful when given a function in two variables involving terms
like 2% + 32, representing the distance from the origin, or when the function behaves
similarly along all directions (i.e., has radial symmetry). This simplifies the analysis
by converting the problem into one of radial distance and angular symmetry, making
it easier to evaluate limits as the distance from the origin approaches zero.

The following version of the squeeze theorem involving polar coordinates allows
us to bound a function in terms of its distance from the origin, making it easier to
evaluate limits as the distance approaches zero.

Theorem 2.2 (Squeeze theorem in polar coordinates). Let E C R? and (z¢,yo) € R>.
Assume f: E'— R is a function that is defined in the neighborhood of (x¢, o) and let
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[ € R. Then,
lim  f(z,y) =1

(2,y)—=(20,y0)
if and only if there exists € > 0 and a function ¥ : (0,e) — [0, 00) such that
(1) lim,_,o+ ¥(r) = 0, and
(ii) for all § € [0,27) we have |f(zo+ rcosf,yo+ rsind) — | < ()

Example 2.11. Consider f: R*\{(0,0)} — R defined by

2

-y
xr,y) = )
f( y) xQ%—yg
Let’s discuss the limit
im T
uwemof( JY)-

We switch to polar coordinates and get

r3 cos? fsin @

f(rcosf,rsinfg) = —
r2cos?26 + r2sinz 0
rcos? fsiné

T .5 -
cos20 +rz2sinz 0

Thus,
7 cos® 0| sin 0| 1 cos® 0| sin 0|

1.5 N
cos?2 0 + r2 sinz 6 cos? 0

|f(rcos@,rsinf)| = =r|sinf| <r
Taking [ = 0 and ¢ (r) = r, we see that the hypothesis of the squeeze theorem in polar
coordinates is satisfied, and conclude that

lim  f(z,y) =0.

(z,y)—(0,0)

2.4.3 Using Taylor’s theorem

Taylor’s theorem (which you have learned in Analysis I) can be useful to find limits
because it approximates a function near a point by a polynomial, simplifying the
analysis before applying the squeeze theorem. For convenience, let us quickly recall
the statement of Taylor’s theorem.

Theorem 2.3 (Taylor’s theorem — single variable case). Let k € N. Suppose I C R
is an open interval and f: I — R is a function of class C*(I). Then for any a € I we
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have

0 (g
f@) =3 e a4 )

=1 J

where r(x) is an “error” term satisfying lim, ., % = 0.

Example 2.12. Calculate the following limits if they exist:
(a) lim x2+ln(1+y2)
({E,y)—>(0,0) \/m

. @)
(b) lim(zy)-00) 257

(a) The first-order expansion of In(1 + ) around a = 0 is

In(1+x) =z +r(z)

where lim,_,q ”acﬂ = 0. We obtain

2 11 2 2 2 2
lim v? +In(1+y%) lim x* +y* +r1(y?)

@y)—00 22+ y2  @y—00  JZ+y?

%+ y? r1(y?)
= lim ——Z_4+ lim —=2L_=040=
(z.9)—=(0,0) /T2 + y°  (29)—(0,0) /22 + y?

The second limit is zero because, for (x,y) # (0,0),

_\Tl(y2)\ < r1(y?) < 1 (y°)]

| T Va2 Ty

with

r(y?) _ iyl - ()]
(@y)—0,0) |yl (@y)—00) 7 (29)—00) |y?]

By the squeeze theorem, it follows that

. 7“1(92) _
hm —— = 0
(2,9)—(0,0) /22 + 32

(b) The first-order expansion of e around a = 0 is
e =1+z+r ()
where lim,_,q ”xﬂ = 0. We obtain
1—e” , 1—1—2%—r(2?) _ —x® —r(2?)

lim ——= im im
(z,y)—(0,0) 22 + Y2 (2,4)—(0,0) 2 + 92 (z,9)—(0,0)  x2 4 y?
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Now, for (z,y) # (0,0),

P @] =2t (@) 2P+ ()]
|22 T |22

with

3 3 3 3
lim —\x |+|;’1(x ) = lim @ + lim |T1(f ) =0+0=
(,9)—(0,0) |22 (z.9)—(0,0) |22 (zy)—(0,0) |22

The squeeze theorem therefore ensures that

—x3 —ry(2?)

im =0.
(zy)—=(00) 224 y?

2.4.4 Using change of variables

The following proposition enables us to convert limits in two variables into limits in a
single variable.

Proposition 2.2 (Composition with Functions of a Single Variable). Let E C R?
and let g: E — R be defined in a neighborhood of (x¢,vy) € R%. Let I C R be such
that I C g(E) and let ¢: I — R be defined in a neighborhood of | € R. Finally, let
f: E — R be defined by f(z,y) = ¢(g(x,y)). If

lim  g(z,y) =1 and lim ¢(t) exists,
(z,y)=(z0,y0) t—1

then

lim x,y) = lim ¢(t).
(rvy)%(ro,yo)f< v) t=l o)

Example 2.13. Let f: R*\{(0,0)} — R be defined by

tan (322 + o2
f(mﬂy):3<22)'
ety

We analyze the limit

lim x,1).
(z,y)—(0,0) fz.y)

If we define g(z,y) = 322 + y?, then by properties of limits we have

2 2
. o . . _ 2.2 2 _
lim g(x,y) = 3( hmo,o) x) + (( hmo,O) y) =3-0°40"=0.

(z,y)—(0,0) (z,y)—( z,y)—(

Define ¢: R\{0} — R by
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Then we have f(x,y) = ¢(g(x,y)). Hence, in light of Proposition 2.2, we have

tan(3z? + y?) i tan(t)
(@y)—(00) 32 + y2 =0 ¢t
Now,
1
lim tan(t) L'Hopital's Rule 1. cos?(]) _ 4
50t =0 1 '
Thus,

lim z,y) = 1.
(z,y)—>(0,0)f( v)

2

Figure 2.7: Graph of the function f(z,y) = zyIn(|z| + |y|).

Example 2.14. Let us demonstrate that the limit of the function f: R? — R defined
by

_Jryn(lz[ +y]) if (z,y) # (0,0)
fe.y) = {o if (,y) = (0,0)

is zero as (x,y) approaches (0,0) (see Fig. 2.7). Note that for every point (z,y) with
0 < V2?2 +y? < 1 we have |zy| < |z| + |y|. This implies that for any such (x,y) we
have the estimate

0 < [f(z, )l = lzyn(le] + [yD] < ([ + [yD[In(lz] + ly])]-

So if we define

g9(z,y) = =(l=[ + [yDIn(jz] + [y)]  and  A(z,y) = (jz| + )] In(|z] + [y])]

then we see that

0<y2?+y?2 <1 = g(z,y) < f(z,y) < h(z,y).
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Substituting ¢ for |z| + |y|, it follows from Proposition 2.2 that:

li 1 = lim tlnt =10
L dim (e + o) o] + )] = it =0,
where we used the fact lim;_,oy tInt = 0, which can be verified using L’Ho6pital’s Rule.
In other words lim gz y)— 0,0y 9(2,y) = lim(g4)—(0,0) A(z,y) = 0. Invoking the Squeeze
Theorem, we conclude that lim, )00 f(2,y) = 0.

2.4.5 Testing along polynomial paths

Testing paths of the form (t%,¢”) is useful for evaluating limits of functions in two
variables because these paths allow us to explore how the function behaves along
different directions approaching the origin. By adjusting the exponents a and [, we
can test a variety of trajectories that the function might take, revealing whether the
limit depends on the direction of approach.

Example 2.15. Let f: R*\{(0,0)} — R be defined by

w3eyP
f(x,y) = g
Our goal is to determine the limit
lim x,1).
(z,y)—(0,0) fz.y)

First, let us test all linear paths by considering
lim f(at, 5t),
with «, 8 € R not both zero. In this case, we get

33346 32342
: : a7t _acpit
%l_{% f(at, 5t) - ,155% atth 4 [12¢12 - %l_r,% at + p12¢8 =0
We see that all linear paths yield the same limit. Therefore, to demonstrate that the
limit does not exist, we must consider non-linear paths.

When dealing with a denominator containing different powers of x and y, a good
approach is to examine paths of the form (t®,t%) for various values of a, 3 € (0, 00).
This gives

5 430433
by f(#7,17) = i e
First, we can take « = 8 = 1. In this case we have
6 t2

lim £(,¢) = lim = 0.

t—0 4 4 ¢12 :%l—{%letﬁi

Next, we choose o and (3 so that the powers appearing in the denominator match. For
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us, this means we want to find a and  such that
4o = 12p.
For example, this is achieved by taking o = 3 and § = 1. Then,

3 th? 1
) = e =y
Since « = =1 and a = 3, = 1 yield different results, we conclude that the limit
does not exist.

2.5 Continuity at a Point

The purpose of this section is to introduce and discuss continuous functions in several
variables.

Definition 2.5 (Continuous function at a point). Let £ C R™ and let X, be an interior
point of E. A function f: E — R is said to be continuous at xq if

Aim f(x) = f(xo).
Definition 2.6 (1% equivalent definition). Let x( be an interior point of E. A function
f: E — R is continuous at x if and only if, for every real number € > 0, there exists
a real number ¢ > 0 such that for all x € F|

d(x,x9) <0 = |f(x)— f(x0)|< €.

Definition 2.7 (2" equivalent definition). Let xq be an interior point of E. A function
f: E — R is continuous at X if and only if, for every sequence (ay)gen of elements of
E we have
li = li = )

dm =X = lIm fla) = flxo)
Remark 2.1. It is very tempting to believe that if a function is continuous in ev-
ery coordinate then the function is continuous. However, this is NOT TRUE! As a
counterexample, consider the function

Sy if (2,y) £ (0,0)

Ja,y) = {0 i (2,) = (0,0)

Let f1, fo: R — R denote the two functions obtained by restricting f(x,y) to the first
and second coordinate at the point (0,0), that is, fi(z) = f(x,0) and fo(y) = £(0,y).
Then fi(x) and f5(y) both are continuous at z = 0 and y = 0 respectively. Nonetheless,
we have already seen in Example 2.9 that the limit of f(z,y) as (x,y) approaches (0, 0)
does not exist, which means that the function f(z,y) (as a function in two variables)
is not continuous at the point (0, 0).

Properties of continuity. Let f and g be two functions from £ C R" to R that are
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continuous at a point xy € R”. Then:

1. Linear combinations: For any «, 8 € R, the function af 4+ g is continuous at
X0;

2. Products: The product function fg is continuous at xg;

3. Quotients: If g(xo) # 0 and g(x) # 0 for all x € E then the quotient § is
continuous at Xg;

4. Compositions: Let A be a subset of R and let

gi,--,gp: A—=R

be functions continuous at the point a = (as,...,a,). On the other hand, let B be
a subset of R? containing

{a(¥),--90(y)) 1y € A}

and f: B — R a function continuous at the point b = (g1(a), ..., gy(a)). Then the
function F': A — R defined by

F(?Jl?' . 7yn) = f(gl<y17' . '7yn)7' .- 7gp(y17' .- ayn))
is continuous at the point a = (aq, ..., a,).

Example 2.16. Let us demonstrate the usefulness of the properties of continuity by
showing that the function F': R*> — R given by F(z,y) = —sin(z)y is continuous at
the point (0,0). To do this, consider the three auxiliary functions f: R*> — R and
g1, g2: R — R defined respectively by

fay) =2y, gi(w,y) = —sin(z),  and  gao(2,y) = .

Since both ¢i(x,y) and go(z,y) are continuous at (0,0) and f(z,y) is continuous
at (¢1(0,0),92(0,0)) = (0,0), we can conclude that F(z,y) = f(q1(x,y),92(x,y)) is
continuous at the point (0,0) (See Fig. 2.8).

Figure 2.8: Graph of the function F(z,y) = — sin(z)y.
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2.6 Continuity in a Region

Definition 2.8 (Continuous function in a Region). Let E be a non-empty subset of
R™ A function f: E — R is continuous on F if for every xo € E and every real
number € > 0 there exists a real number § > 0 such that for all x € E,

dx,x0) <6 = |f(x)— f(x0)|< €.

Definition 2.9 (Equivalent definition). Let E be a non-empty subset of R". A func-
tion f: E — R is continuous on E if for every sequence (ay)rey of elements of F we
have

Jmae=x =l f@) = f6o)

Remark 2.2. If ' is an open set then f: £ — R is continuous on E if and only if it
is continuous at every point in E.

Example 2.17. Let us demonstrate that the function f: R? — R defined by

w ifx#0
Y ifx=20

fz,y) = {
is continuous on R? (see Fig. 2.9). Define the function i : R — R by
sin(s) if 0
TOES SR
1 ifs=0

It is continuous for all s # 0 and, as lim,_,o h(s) =1 = h(0), it is also continuous at 0.
This is useful because we have f(z,y) = h(xy)y for all (z,y) € R2. Since the functions

a(z,y)=zy and  b(z,y) =y

are continuous at every point in R? and f(z,y) = h(zy)y = a(h(a(z,y)),b(z,y)) for all
(z,y) € R?, it follows from the properties of continuity that f is continuous at every
point in R2.
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5 -2

Figure 2.9: Graph of f(z,y) = w for x # 0.

2.7 Extreme Value Theorem and Intermediate Value
Theorem

Definition 2.10 (Maximum and minimum). Let £ C R™ be non-empty and f a
function from F to R. A real number M satisfying

e f(x) < M for every element x in F, and

. Mem(f),
is called the mazimum of the function f on E and is denoted by maxyep f(x). If
xo € E is such that f(xg) = M then we say that the function f reaches its maximum
at the point x(. Similarly, a real number m satisfying

e f(x) = m for every element x in F, and

« m € Im(f),
is called the minimum of the function f on F and is denoted by mingep f(x). If
xo € E is such that f(x¢) = M then we say that the function f reaches its minimum
at the point x,.

Proposition 2.3 (Extreme value theorem). Let E be a compact subset of R™ and
f: E — R a continuous function. Then f has a minimum min,cg f(x) and a maximum
maxyep f(x) on E.






Chapter 3

Partial derivatives and
differentiability

3.1 Partial Derivatives

Recall that given a differentiable function in a single variable f: R — R, the derivative
of f at the point a € R is defined as

B R () R L N (O e (0}

N dx t—0 t r—a T —a

f'(a)

We are already familiar with several different ways of thinking about the derivative of
a function:

o The derivative of a function f quantifies the rate of change of the function’s
output value with respect to its input value. For example, if the derivative
of f at a point a is a ‘large’ positive number then a positive change close to
a will result in a ‘proportionately large’ positive change in the output value.
Conversely, if the derivative of f at a point a is a ‘small’ negative number then a
positive change close to a will result in a ‘proportionately small’ negative change
in the output value.

o The derivative f'(a) of a function f at a point a equals the slope of the tangent
line to the graph of the function at that point. Moreover, the tangent line is the
best linear approximation of the function near that input value.

The goal of this chapter is to extend derivatives to functions in several variables.
While functions in one variable have only one derivative, functions in several variables
have multiple derivatives, one for each variable. These are called the partial derivatives.

Let

1 0 0
0 1 0
€ = 0 y €2 = 0 ) ey G =
: : 0
0 0 1

39
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denote the vectors of the canonical basis of R”. Note that for any element x =
(1,...,2,) € R" we have x = Y_}_, xe;, where x, = (x,ey), for k=1,...,n.

Definition 3.1 (Partial derivatives). Suppose E C R" is a set and a = (ay,...,a,)
is an interior point of E. Let f: E — R be a real-valued function in the variables

(x1,...,2,). The partial derivative of f at the point a with respect to the variable xy
(the k-th variable) is defined as
t —
oy, t—0 t

whenever this limit exists. If this limit does not exist then we say that the partial
derivative of f at a with respect to z, does not exist.

Intuitively, the partial derivative % is the derivative of f(x1,...,x,) with respect
to the variable x;, while all the other variables remain constant. We also use the
notation

mea%@;

or if the real variables of f are explicitly given, say f(z,y, 2), then we write

of

ox
0
Dyf(‘f,y,Z) = a‘:]yc(ﬂf,y,z>

D:Ef(x7y7 Z) = (x7y7 Z)

D.f(z,1,2) = L (2.9, 2).

Remark 3.1. The partial derivative %(a) exists if and only if the function gx(t) =
f (a+ tey) is differentiable at ¢t = 0, because
of fla+ter) — f(a) k(1) — 91(0)

. . g
(@) =l : e e A (ORI CRY

This means that %(a) corresponds to the slope of the tangent line pointing in the
direction of the canonical vector e;. In the case of two variables, Fig. 3.1 below provides
an illustration of the partial derivatives as the slope of tangent lines in the x-direction
and in the y-direction.
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tangent line in y direction

with slope %(550, Yo)

tangent line in x direction

with slope %(IO, Y0)

(z0, Yo, f(x0,Y0))

(o, yo,.f(xo,yo))

(z0, Yo, 0)

Figure 3.1: The gray surface is the graph of the function f(z,y) and contains the point
(20, Yo, f(x0,y0)). In the left figure, the plane y = yy (pink plane) intersects the graph
of f(z,y) in a curve. The tangent line to this curve at the point (zo, yo, (2o, %)) (pink
line) has slope equal to the partial derivative of f(z,y) with respect to the variable
at the point (z¢, o). The right figure depicts the tangent line (green line) to the curve
that is the intersection of the graph of f(x,y) with the plane x = zy (green plane) at
the point (o, Yo, f (o, ¥0)), whose slope is the partial derivative of f(z,y) with respect
to the variable y at the point (xg, yo).

Example 3.1. Consider a pot filled with water being heated on top of a stove
(see Fig. 3.2). Let us think of the pot as a cylinder in R3 given by

D={(z,y,2) eR: 2> +9y* <1, 0 <z < 1}.

Suppose at time t the temperature of the water at the position (z,y, z) is given by the

equation
80 z 2.2
T t)=(100— —— |- (1—= ) -e ™ 7Y,
(7,9, 2,1) ( 1+t) ( 2) ‘

Then T is a function in 4 variables (3 space variables and 1 time variable) with domain
dom(7T") = D x [0,00). We can calculate its partial derivatives as

GT 80 z 2_.2
_ 97 _ O N (122 (o). ey
L@y 2t) = 5@yt = (100 ) - (1= 2 ) (<20,
8T 80 z _ 2242
T,(x,y,z2,t) = a—y(m,y,z,t) = <100 - 1+t> 1= 2) (=2y) e,

or

80 2 .2
Tz(x7y7zyt) - E(‘x;y?Z;t) - (100 — ]_—|—t> : (_ ) et )

ar 80 5 o
Tt(ﬂfay,zi)zat(x,y,z,t):(1+t)2.<1_2).e v
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What do these partial derivatives mean? For example, T;(z,y, z,t) describes the rate
of change in temperature at a stationary point (z,y, z) as time ¢ changes. Since T} is
always positive, we see that in every point (z,y, z) the temperature is increasing as
the time ¢ increases. Conversely, due to the sign of T, T,,T., we see that for a fixed
time t, the temperature is decreasing as we move away from the origin and towards
the boundary of the cylinder, which makes sense because the water at the edge of the
pot should be cooler than the water in the middle.

Figure 3.2: A pot of water with heat being applied from the bottom.

Definition 3.2 (Gradient vector). Let £ C R™ be an open set, let f: £ — R be a

function and suppose all partial derivatives %(a), o ;Tf(a) of f at the point a € F

exist. Then

of of 1
= = e R™™
Vf(a) = emud f(a) = (37 @ (@) R
is called the gradient of f at a. If at least one of the partial derivatives aa—zfl(a), e %(a)

of f at the point a does not exist then we say that the gradient of f at a does not
exist.

Remark 3.2. The gradient V f(a) can also be written as a linear combination using
the canonical vectors eq, ..., e,,

n

Vi) = ,; Dy f(a)e].

Therefore Dy.f(a) = 2L (a) = (Vf(a),e;) forall k =1,2,... n.

oxy,

3.2 Directional Derivatives

Definition 3.3 (Directional derivatives). Let E C R™ be an open set, f: E — R a
real-valued function, and v € R™\{0}. The directional derivative of f along the vector
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v at the point a € E is defined as

O )t L) T a)

t—0 t

wherever this limit exists. If this limit does not exist then we say that the directional
derivative of f along v at the point a does not exist. When v is a unit vector (which
means ||v||s = 1), it is also called the derivative in the direction v.

Note that the partial derivative with respect to the variable x; coincides with the
directional derivative along the vector ey, that is,

of

Oy

Many of the familiar properties of the ordinary derivative hold for the directional
derivative. In particular, if V, f(a) and Vyg(a) exist then
1. Linearity: For all a;, 8 € R we have

Vy(af + Pg)(a) = a(Vvf(a)) + B(Vvg(a)).
2. Product rule (or Leibniz’s rule):
Vy(f-g)(a) = g(a) - Vyf(a) + f(a) Vyg(a).
3. Quotient rule: If g(a) # 0 then

f _g(a)-V,f(a) — f(a)-Vyg(a)
Vv<)(a) _ Ll .

(a) = VEkf(a)'

3.3 Differentiability at a Point

Recall from linear algebra that a linear map from R™ to R is a function L: R® — R
that satisfies linearity, meaning it preserves addition and scalar multiplication: for all
x,y € R" and all o, f € R, we have

L(ax + fy) = aL(x) + SL(y).

Note that any linear map L can always be represented as L(x) = (w, x), where w € R"
is a fixed vector and (.,.) denotes the standard inner product on R" defined in (1.1).

Definition 3.4 (Differentiability at a point). Let £ be a non-empty open subset of
R". A function f: E — R is differentiable at the point a € FE if there exists a linear
map L,: R™ — R such that

L@t h) — (@)~ La(h)

= 0.
h—0 [hl|2

In this case, the linear map L,: R™ — R is called the differential of f at the point a.

Theorem 3.1 (Fundamental theorem). Suppose f: E — R is a function defined on
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a set E C R", and a is an interior point of E. If f is differentiable at a then the
following statements hold:
(i) f is continuous at a.
(ii) All partial derivatives of f at the point a exist, the gradient vector V f(a) of f
at the point a exists, and the differential L,: R™ — R of f at the point a is the
same as scalar multiplication by the gradient vector, i.e.,

L.(v) =V f(a)-v, Vv e R".
(iii) All directional derivatives of f at the point a exist and are given by
Vef(a) = La(v) =V f(a)-v, Vv e R".
(iv) For all x € E we have
fx) = f(a) + Vf(a) - (x —a) +r(x),
where ry is an “error” term satisfying

lim 1 g
x=a |[x —all

The function

t(x) = f(a)+Vf(a)- (x —a)

is called the linearization (or linear approximation) of f at the point a.

(v) The function f(x) = f(z1,...,x,) increases most rapidly in the direction Vf,
and decreases most rapidly in the direction —V f. Any vector v € R"\{0}
orthogonal to V [ is a direction of zero change.

R4 Contour didgram for { (x,y)

cos (8)- | V41 18|

|vf-al=
= Cos(®)'| v4)

, |9€- @] is largest when
* tos (& =1 | or equivalently, when

| 0=0.
‘:\f,\vf v§ ... stepest increase
£flxy=k ~U{ ... sheepest decrenge

direchons of no change

Figure 3.3: The gradient vector V f gives the direction of steepest incline, while the
rate of change in the direction of the contour lines equals 0.

Remark 3.3. The gradient is perpendicular to the level sets of a function.
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Theorem 3.2 (Sufficient conditions for differentiability). Let £ C R", f: E — R,
and suppose a is an interior point of E. If there exists 0 > 0 such that every partial
derivative 887}; of f exists at every point in the open ball B(a,d) and 8%(351, ..,y IS
a continuous function at the point a, then f is differentiable at the point a.

Example 3.2. Consider n =2, E =R? f: R? =5 R, f(z,y) = 2* — y*>. We have:
of

_ = 2

e (z,y) = 2z,
of

_— = —2
By (z,y) Y,

Vf(l’,y) = (21:’ _Qy)

Example 3.3. Let E = {(z,y) € R? : 2 > 0} and f(z,y) = ¢Y1°6%. Then

g( ) — yeyloga:
81’ xay - T )
of

o-(x,y) = e’ log z,

dy

ylogx
Vf(ff,y) = (yejeylogx ’ 1Og$> .
X

3.4 Tangent (Hyper)Planes

Recall that a straight line is called a tangent line to the curve y = f(z) at a point
x = a if the line passes through the point (a, f(a)) on the curve and has slope f’(a),
where f'(x) is the 1°* derivative of f. The equation of the tangent line is then given

by
y = f(a) + f'(a)(z —a).

The equation of the tangent line is closely related to Taylor’s theorem, which says that
the 1%*-order Taylor expansion of f is given by

fl@)="fla)+ f(a)(x —a)+ ri(z)

o =,

lz—al

where 71(x) is an “error” term that satisfies lim,_,,

A similar concept applies to multivariate functions in n-dimensional Euclidean
space. As we have seen (cf. part (iv) of Theorem 3.1) if f(z1,...,2,) is a function in
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n variables that is differentiable at a point a € R™ then
f(x)=f(a)+ La(x —a) +7i(x) = fla)+Vf(a) - (x—a)+ r(x) (3.2)

where r1(x) is an “error” term satisfying limy_,, ﬁ =0.

Definition 3.5 (Tangent hyperplane). Let E C R™ and f: E — R, and assume that
a is an interior point of E. Suppose f is differentiable at a, and consider the linear
approximation of f at a given by

t(x) = f(a) + Vf(a)- (x —a).

The graph of t(x) is called the tangent hyperplane of f at a. That is, the tangent
hyperplane consists of all points (xy, ..., %, Tn11) € R™™! satisfying the equation

Tpr1 = t(xy, ..., ).

This equation is commonly referred to as the equation of the tangent hyperplane.

When n = 1, the tangent hyperplane is the same as the tangent line, and when
n = 2 the tangent hyperplane is usually just called the tangent plane (see Fig. 3.4).

Tangent plane at P

z2=f(x,y)

X

Figure 3.4: Tangent plane to a function z = f(z,y) at P = (xo, Yo, f(x0, %))

Example 3.4. Let us find the equation of the tangent plane to the elliptic paraboloid
z=22"+1y+1

at the point (1, —1,4). This elliptic paraboloid is the graph of the function f(z,y) =
202 + 9% + 1. The partial derivatives of f form the gradient given by

Vf(x,y) = (4z,2y).
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We can now write down the linear approximation of f(z,y) at the point (1, —1) as

) = F(1,-1) + VF(1,—1) - ((y) - (_11)> _

_4+(4,—2)-<§:>

=4+4(x—-1)—-2(y+1)
=4r — 2y — 2.

Thus, the equation of the tangent plane to the elliptic paraboloid at the point (1, —1,4)
is

z=4xr — 2y — 2.

3.5 Functions of Class C*

Definition 3.6 (Differentiability in a region). Let £ C R" be an open set and f: E —
R a function on E. If f is differentiable at every point a € E then we say that f is
differentiable on E.

Definition 3.7 (Functions of Class C'). Let £ C R" be an open set. A function
f: E — R is said to be of class C'(F) if all its partial derivatives exist and are
continuous at each point x € F.

The existence and continuity of the partial derivatives at every point in E implies
the differentiability of the function at every point in E (see Theorem 3.2). It follows
that any function of class C'(E) is differentiable on E.

Proposition 3.1. Let E C R™ be open and f: E — R a function of class C'(E).
Then f is differentiable on E.

Example 3.5. Consider the function f: R? — R given by
it (2,y) £ (0,0)
— :E2+y2 1 Y y )
ren={ 7 Gn o
We have already studied this function in Example 2.9 and Remark 2.1.

« For (z,y) # (0,0), we can calculate the partial derivatives as

af Y 222y
%(377y> = :c2+y2 - <$2+y2)2
af x 21>
@(%3» = 22 + 12 B <x2+y2>2-
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« At the point (0,0) we can use the definition of partial derivatives and find
h,0) — £(0,0 0
0 = F0,0) 0

of

%(0’ )_111%0 h flzaoh_o
of _ o SO0,0) = F(0,0) 0
oy O I im0

This shows that the partial derivatives 2 b L and 8f exist for every point in R2. Nonethe-
less, this function is not differentiable at the pomt (0,0). Indeed, we have seen in
Example 2.9 that this function is not even continuous at the point (0, 0), so according
to part (i) of Theorem 3.1, it cannot be differentiable at that point. This example
illustrates that even if a function is differentiable in every coordinate, this does not
mean that it is differentiable. In conclusion, the function f is of class C*(R?\{(0,0)}).

3.6 Second Order Partial Derivatives

The partial derivatives g g R, aaf are also referred to as “partial derivatives of order

17 or “first order partial derivatives”. Let us now define the second order partial
derivatives.

Definition 3.8 (Partial derivatives of second order). Let F C R" be an open set and
1 <k <n Assume f: E — R is a function whose partial derivative 887]; exists for

every point in F. For 1 < ¢ < n, if the partial derivative of g—;; with respect to the
variable x; at the point a exists, then we obtain a second order partial derivative of f

with respect to z; and x; at a denoted by 61826]; - (a). If this derivative exists for every

EF— R.

a € F, it defines a function a

f af . If i # k, then there

are generally two mixed second-order partial derlvatlves.

0 f 0 f
and :
These derivatives are not necessarily equal since the order of differentiation can affect

the result. However, as the following theorem states, they are equal if an additional
continuity assumption is satisfied.

Theorem 3.3 (Schwarz’s theorem). Let E C R™ be open and let f: E — R be a
function defined on E. For any point a € E and indices i,k € {1,...,n}, suppose the

mixed partial derivatives Pf  and 2L exist in E and are continuous at a. Then,

2 ) Ox;0xy, O0x0x;
0 0
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Definition 3.9. The n x n matrix

0?2 0?2
8x1<9f:1:1 (a) t aaznafxl (a>
Hess(f)(a) = : . :
0? 0?
axlaj;n (a) t 8:1:n<9fxn (a>

is called the Hessian matriz of f at the point a, written Hess(f)(a).

If all the partial derivatives of order 2 exist and are continuous at a then by
Schwarz’s theorem the Hessian matrix is a symmetric matrix, i.e., Hess(f)(a) =
Hess(f)(a)?. In this case we can use the Hessian matrix to form the second order
expansion of a differentiable function, given by

(3.3)

where 75(x) is an “error” term satisfying limy ., ﬁ =0.
2

The quadratic approximation is a polynomial of degree 2 in n variables called the
Taylor polynomial of order 2 at the point a and it is usually denoted by Ps(z,y).

Example 3.6. Let us find the Taylor polynomial of order 2 for the function f(x,y) =
sin(2z + y) + 3 cos(x + y) at the point (0,0). Recall the formula for computing the
quadratic approximation of a function in two variables at the point (0,0) is

Py(z,y) = £(0,0) + V£(0,0) - ( ’ ) + ;@;,y). Hess (£)(0,0) - ( ’ ) |

To use this formula, we have to find the gradient vector and the Hessian matrix
first. We have

Vf(z,y) = (2cos(2x + y) — 3sin(x + y), cos(2z + y) — 3sin(z + y))
which gives
Vf(0,0) =(2,1).
Moreover,

[ —4sin(2z 4+ y) —3cos(z +y) —2sin(2x +y) — 3cos(z +y)
Hess(f)(z,y) = ( —2sin(2z +y) — 3cos(z +y) —sin(2z +y) — 3cos(z + y) )

and hence

Hess(f)(0,0) = < BN ) |
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It follows that

Pg(x,y>:3+(271>-<§>+;(x’y>'<:g j)(i)

3 3
:3+2x+y—§x2—3xy—§y2.

This is a degree 2 polynomial in 2 variables.

3.7 Higher Order Partial Derivatives

Definition 3.10 (Partial derivatives of higher orders). Consider a function f: £ — R

defined on an open set ¥ C R". For a sequence of indices iy,...,7, with each 7; €

{1,...,n} and for p > 3, assume that the (p — 1)-th order partial derivative of f,

denoted as #, exists in . Then, the p-th order partial derivative of f with
A ip—1

respect to these indices, if it exists, is given by:

of 9 orf
Oz, ... 0y B Oxi, \Oviy ... 0xi, , )

of

6381'1)...84131'1

This derivative is denoted as (a) for any point a € E. If such a derivative

exists for every a € F| it defines a function % E— R
ip--OTiy

Example 3.7. Consider a function f: R? — R defined by f(x,y) = x3y?>. We
calculate its higher-order partial derivatives as follows:

af

O . = a2y,

L e = L (aety?) = by
;;gx(x, y) = %(39&@2) = 6a%y,
) = 26 = 120,
P 9 )

%(z,y) = %(635?/2) = 6y”.

This illustrates the computation of first, second, and third-order partial derivatives for
a function of two variables.

Remark 3.4. Explicit computations also give ;%afy(x,y) = 62y = a(fafx (x,y) and
8£Jax (x,y) = 122y = 83(?; s(x,y), demonstrating the symmetry in mixed partial

derivatives.
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3.8 Functions of class C?P

Definition 3.11 (Functions of class C?). Let E be an open subset of R” and p a
positive integer. A function f: E — R is said to be of class CP(FE) if all its partial
derivatives of order p exist and are continuous at every point in FE.

A function f: E — R is said to be of class C*°(E) if, for every integer p > 0, it is of
class CP(FE).

Proposition 3.2. If f: E — R is a function of class CP(F), then it is also of class
CK(E) for all 0 < k < p.

Example 3.8. Consider the function f: R?> — R defined by f(z,y) = xsin(zy).
Then, for every (z,y) € R?, we have:

B .

aﬁ(af, y) = sin(zy) + zy cos(zy),

gg(g;, y) = a* cos(zy),

0? )

axé(‘”’ y) = 2y cos(zy) — xy’ sin(zy),

% f o B .
8x8y(x7‘y) - ayax (I‘,y) =2x COS(LUy) - ysm(:(:y),
0? )

s () = —a*sinay).

Figure 3.5: f(z,y) = xsin(zy)

The following is a corollary of Schwarz’s theorem.

Corollary 3.1. Let f: E — R be a function of class C?(E) and let k be an integer
between 1 and p. If two ordered k-tuples (iy,--- ,ix) and (j1,- - ,jx) are equal up to
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a permutation, then, for any element a = (ay,...,a,) of E, we have

)= O ()
axil...axik ay, , An ) = ax‘jl."axjk as, , Q).

3.9 Taylor’s Theorem for Multivariable Functions

The following is a special (but often very useful) case of Taylor’s theorem for multi-
variate functions.

Theorem 3.4 (Taylor’s Formula — special case). Let E C R™ be open and f: E — R
a function of class CP™'(E). Then for every a € E there exists a real number ¢ > 0
such that B(a,2d) C E and, for every element x € B(a, ), one can associate a number
0 < 0 < 1 so that the following equality (known as Taylor’s formula) holds:

1
(p+ 1)V
where F': (—2,2) — R is the function defined by F(t) = f(a+ t(x — a)).

f(x)=F(0)+ F'(0)+...+ F(”)(O)pl! + FP+D(p)

To state Taylor’s theorem for multivariate functions in full generality, we first
need to introduce the multi-index notation. Given an n-tuple of non-negative integers
a=(o,...,q,) and a point x € R, let

lal =1+ ... 4+, al=a! ), x¥=z -2

(Recall that by convention 0! = 1.) For example, if n = 3 and a = (1,0,4) then
we have || = 1+ 0+4 =5 and a! = 1!-0! - 4! = 24, and (1, T, 13)* = 3175,
Given a function f: E — R of class C*(E) and an n-tuple of non-negative integers
a=(ay,...,q,) with |a| < k then we write

olel f

ax?l [ al‘%n ’

Def =

Since f is of class C*(E), all its k-th order partial derivatives exist and are continuous
and, by Schwarz’s theorem, one can change the order of mixed derivatives. This ensures
that as long as |a| < k the above notation is well-defined and unambiguous.

Theorem 3.5 (Multivariate version of Taylor’s theorem). Let k € N. Suppose E C
R"™ is open and f: E — R is a function of class C*(E). Then

D f(a o

f(x)=> |< )(x —a)® + rp(x) (3.4)
aoe o

where the sum is taken over all n-tuples of non-negative integers @ = (ayq, ..., )

re(x) 0.

x—all3

with |a| < k and ri(x) is an “error” term satisfying limy 5
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Note that if £ = 1 then formula (3.4) is the same as (3.2) and if k = 2 then formula
(3.4) is the same as (3.3).

3.10 Local Extreme Values

One of the main uses of ordinary derivatives is in finding maximum and minimum
values (extreme values). In this section we see how to use partial derivatives to locate
maxima and minima of functions in more than one variables. This theory finds many
applications, for example it can be used to maximize the volume of a box without a
lid if we have a fixed amount of cardboard to work with.

z absolute
maximum
local
maximum
j =
- "~ >
X e Y
absolute lo.ca.l
.. minimum
minimum
Figure 3.6

Look at the hills and valleys in the graph of f shown in Fig. 3.6. There are two
points where f has a local maximum, that is, where f is larger than at nearby values,
and two local minima, where f is smaller than at nearby values. We observe that
at all these extreme values, the tangent plane to the graph is horizontal, or in other
words, all the partial derivatives vanish at these points. This motivates the following
definition.

Definition 3.12 (Stationary Point). We say that a = (ay,...,a,) € F is a stationary
point of the function f: E — R if all its partial derivatives are well-defined and vanish
at a, that is,

of . _of

Txl(al’”"an) = B
Definition 3.13 (Local Maximum and Minimum of a Function). We say that the
function f: £ — R admits a local maximum (resp. local minimum) at the point a € £
if there exists a real number 6 > 0 such that for all x € F we have x € B(a, d) implies
f(z) < f(a) (resp. f(z) = f(a)). Furthermore, we will say that a function admits a
local extreme value at the point a if this function admits either a local maximum or a
local minimum at that point.

(a1,...,a,) =0.

The notion of a local maximum or minimum is not to be confused with the notion
of (global) maximum or minimum given in Definition 2.10.
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Theorem 3.6 (Necessary Condition for local extreme values). Let f: E — R be a
function and assume all partial derivatives of f at point a exist. If f has a local
extreme value at the point a, then a must be a stationary point.

Figure 3.7: A so-called monkey saddle surface, with the equation z = 2% — 312,
Its name derives from the observation that a saddle for a monkey would require two
depressions for the legs and one additional depression for the tail.

The geometric interpretation of Theorem 3.6 is that if the graph of f has a tangent
plane and a local extreme value at a point a, then this tangent plane must be horizontal.

Remark 3.5. The condition demonstrated in Theorem 3.6 is only a necessary one,
but not sufficient, because stationary points are not always local extreme values. For
example, let f: R? — R be the function defined by f(z,y) = 23 — 3zy?. Since

of of

—(0,0) = =(0,0) =0,

(0.0 = 50.0)
ti follows that (0,0) is a stationary point of f. However, f does not have a local
extreme value at (0,0), which is evident from the graph of f depicted in Fig. 3.7.
Indeed, we see that this surface has a horizontal tangent plane at the origin, yet it
does not have a local extreme value at that point.

Proposition 3.3. Given a function f: E — R, if f possesses a local extrema at the
point a = (ay,...,a,), then, in light of the necessary conditions outlined in Theo-
rem 3.6, the point a must fall into one of the following categories:

o Stationary points of f, where the gradient of f exists and vanishes;

o Points within the domain E at which at least one of the partial derivatives of f

does not exist.

This categorization is crucial for identifying the points at which the function f may
achieve its maximum or minimum values, highlighted by either a zero gradient (indi-
cating a lack of change in all directions) or the absence of a derivative (indicative of a
potential sharp point or discontinuity).
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Example 3.9. Consider four points in R*: A = (7,1), B = (z,—xz), C = (y,y), and
D = (8,4). How should we choose x and y so that the sum of the distances from A to
B, from B to C, and from C to D is minimal? This problem is equivalent to finding
a point in R? for which the function f: R? — R defined by

Fla.y) = /(@ =72+ (=2 = 17+ (2 — )+ (—0 — ) +/(y = 8+ (y — 4
=2 <\/$2—6x + 25+ \/x2—|—y2 + \/yz— 12y+40>
reaches its minimum. First, we need to demonstrate that such a point exists. For this,
let £ = {(z,y) € R?: 2* + y* < 10?}. Since f is continuous on F and E is a compact

subset of R?, it follows from the Extreme Value Theorem (see Proposition 2.3) that
there exists an element (a,b) in E such that

f(a,b) = (g)igEf(x,y)-

Consequently, noting that for every (z,y) ¢ E:

f(z,y) = V2 22 + 92 > V2v/1000 > V2(5 + v/40) = £(0,0) > f(a,b)

we can conclude that

f(a,b) = min_f(x,y).

(z,y)ER?

So there exists a global minimum for the function f. Notice that

of 2 —1/2 2 2\ ~1/2

&E(x,y)—ﬁ«x —6x—|—25) (x—3)+(x —i—y) x)

of 9 o\ —1/2 9 ~1/2

afy(%,y) = \/§<($ +97) Tyt (- 12y +40) (y—6)>
for (x,y) # (0,0). Since the only stationary point of f is (1,2), we can assert that
(a,b) = (1,2) or (a,b) = (0,0) (see Proposition 3.3). However,

£(1,2) = 5V10 < V2(5 + v40) = £(0,0)
thus, we can affirm that (a,b) = (1,2). Consequently, the two sought points are
B =(1,—-1) and C = (2,2).

Fig. 3.8 below provides the geometric solution to this problem.

3.11 Global Extreme Values

The Extreme Value Theorem (Proposition 2.3) says that any continuous function on
a compact set attains a maximum and minimum. To find these extreme values (which
are sometimes also called absolute extreme values or global extreme values), we can
employ the following extension of the Closed Interval Method.
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Figure 3.8: The aim is to find a point C' on the blue line and B on the purple line
such that the distance AB + BC + C'D is minimal.

Finding Global Extreme Values. Let f: F — R be a continuous function on
a compact set F and suppose f is differentiable on the interior E. To find the
absolute maximum and minimum values of f on E, complete the following three
steps:
1. Find the stationary points of f on the interior E.
2. Find the extreme values of f on the boundary OF.
3. Compile a list of the function values at the points found in steps 1 and 2. The
largest of these values is the (absolute/global) maximum value; the smallest
of these values is the (absolute/global) minimum value.

Example 3.10. Let us find the absolute maximum and minimum values of the func-
tion f(z,y) = x® — 2zy + 2y on the rectangle D = {(z,y) : 0< 2 <3, 0 <y <2} =
0,3] x [0,2].

Since f is a polynomial, it is continuous on the compact rectangle D, so Proposi-
tion 2.3 tells us there is both an absolute maximum and an absolute minimum. First
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we find all the stationary points. These occur when

of
ox
of
Jdy

(:Ir,y):2:1:—2y:0,
—(z,y) =22 —2y =0,

so the only stationary point in is (1,1). This point is in D and the value of f at this
point is f(1,1) = 1.

In step 2 we look at the values of f on the boundary of D, which consists of the four
line segments L; = [0, 3] x {0}, Ly = {3} x[0,2], L3 = [0, 3] x {2}, and L, = {0} x 0, 2].
On L; we have y = 0 and
r < 3.

fa.0)=a% 0

This is an increasing function of x, so its minimum value is f(0,0) = 0 and its maximum
value is f(3,0) =9. On Ly we have x = 3 and

N

which is a decreasing function of y, so its minimum value is f(3,2) = 1 and its
maximum value is f(3,0) = 9. On L3 and L4 we can execute very similar strategies.
We find that when restricted to Lg, f has a minimum at (2,2), which is f(2,2) = 0
and a maximum value at (0,2), which is f(0,2) = 4. The maximum of f on L, is at
(0,2), with £(0,2) = 4, and the minimum is at (0,0) with f(0,0) = 0.

In step 3, we compare all the values that we have thus far found:

(xy) | f(x,y)
(L1 | 1
0.0) | 0
B0 | 9
B32) | 1
22) ] 0
02)] 4

We see that the maximum value of f on D is f(3,0) = 9 and the minimum value is

£(0,0) = f(2,2) = 0.

3.12 Saddle Points

Recall that for functions of a single variable, a stationary point ¢ where f’(¢) = 0 may
correspond to a local maximum, a local minimum, or neither. An analogous situation
occurs for multivariate functions. If a is a stationary point of a function f, where
Vf(a) =0, then f(a) may be a local maximum, a local minimum, or neither. In the
last case, we are dealing with a so-called saddle point of f.

Definition 3.14. If a is a stationary point of a function f that is not a local extreme
value then a is called a saddle point of f.
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The name ‘saddle point’ derives from the fact that the prototypical example in
two dimensions is a surface that curves up in one direction, and curves down in a
different direction, resembling a riding saddle (for a rider of an animal such as a horse)
or landform saddle (a mountain pass between two peaks). In general, the graph of a
function at a saddle point need not resemble an actual saddle, but the graph crosses
the tangent plane at that point.

In summary, saddle points are points where the tangent plane is horizontal, but
there are points arbitrarily close to it where the function value lies above the tangent
plane, and at the same time points arbitrarily close where the function value is below
the tangent plane.

3.13 The Second Derivative Test — two-variable case

We need to be able to determine whether or not a function has an extreme value at
a critical point. The following test is analogous to the Second Derivative Test for
functions of one variable.

Theorem 3.7 (Second Derivative Test — 2 variable case). Let E C R? be an open
set and f: E — R a function of class C*(E). Let D denote the determinant of the
Hessian matrix of [ at the point (a,b) € E, i.e.,

%(a,b
%I (a,b)

0xdy

D = det(Hess(f)(a,b)) =

21 (a, b))

)
oL (a,b)

2 2 2 2
= 24(a.b) - 24(a,b) — (2L (a,0)) "

If (a,b) is a stationary point then the following conditions determine the nature of the
extreme value at (a,b):

o If D >0 and %(a, b) > 0, then f has a local minimum at (a,b).

o If D >0 and g%(a, b) < 0, then f has a local maximum at (a,b).

o If D <0, then f has a saddle point at (a,b).

o If D =0 then the test is inconclusive.

Remark 3.6.
o If D = 0 then the test gives no information: f could have a local maximum or
local minimum or a saddle point at (a,b). An example of such a function would
be f(z,y) = (y — 2?)(y — 22?) at the point (a,b) = (0,0).
e« If D > 0 then %(a,b) and ‘327’;(@,17) are both non-zero and have the same

sign. This means we can replace the condition g%’;(a,b) > 0 in the first part

of the test with either the condition %(a, b) > 0 or even with the condition
tr(Hess(f)(a,b)) > 0, the trace of the Hessian matrix. The same goes with the
condition %(a, b) > 0 in the second part of the test.

e Note that Theorem 3.7 only concerns functions in two variables. There is also

a version of the second derivative test for functions in three and more variables,
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which we cover in the next section.

Example 3.11. The two functions g, h : R*> — R defined respectively by g(z,y) =
23+ 22 +y3 and h(z,y) = 2* +y* (see Example 3.11) have (0,0) as a stationary point
and satisfy

( L <o,o>)2 ~%90,0-2910,0) =0,

0x0y 0x? 0y?
&2h > 9h &2h
(55, 0.0) = S50.00- S5 0.0) =0

Since the function g does not have a local extreme value at the point (0,0), while the
function h does, this example illustrates that for a C? class function f: R? — R in the
neighborhood of (a,b) which satisfies

Of oy _OF 4 Pf o\ P P
%(a, b) = a—y(a,b) =0, and <8x3y(a’ b)) - w(a, b) - a—yQ(a, b) =0,

it is generally not possible a priori to determine whether it admits an extrema at the
point (a,b).

m;}
+ 20 "= 30 ‘
(] +
8 10 fa OO0
(Tt ™y 20 \‘\ "0' { 4
< L X0 Wy 11
e 10 Aol sttt
= S R e Ee / ;
= e 2 T 2
0 0
Y 2 -2 X ¥ = 2 X

Example 3.12. Let f: R? — R be the function defined by f(z,y) = y3+3y*—4dzy+a2.
Since for all (z,y) € R%:

aof B of a2
%(% y) = —4dy + 2, By (z,y) = 3y~ + 6y — 4z,
and
O’ f O’ f o’ f
8x2(x7y) _27 amay(x’y) __47 aiyg(xvy) _6(y+1)a

it follows that the stationary points of the function f are (0,0) and (4/3,2/3), and at
these points
0% f 0% f

O f 2
5:2(0.0)- 072(0’0) - <axay(0’0)> =4 <0,
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and

O f O f O f 2
5.2(4/3.2/3) 872(4/3, 2/3) — <8x8y(4/3’ 2/3)) =4>0.

Therefore, according to Theorem 3.7, the function f has a local minimum at the point
(4/3, 2/3), while at the point (0,0), it does not have a local extreme value because it
is a saddle point.

3.14 The Second Derivative Test — general case

Recall from linear algebra that every real symmetric n x n matrix is diagonalizable.
In particular, symmetric matrices possess n real eigenvalues (when counted with mul-
tiplicities) and admit a basis of eigenvectors. This also applies to the Hessian matrix
of a function: As we have learned, if f(z,...,2,) is a function in n variables of class
C? then its Hessian matrix

9 92
81‘18$1 T 6a:n6m1
Hess(f) = : ' :
>f 9f
0x10x, " OznOzn
is a real symmetric matrix, which means it admits n real eigenvalues Ay, ..., \,. These

eigenvalues determine the curvature behavior of the function f and play a crucial role
in the second derivative test for multivariate functions.

Theorem 3.8 (Second Derivative Test — general case). Let E C R™ be an open set
and f: E — R a function of class C*(E). Let a € E and let \i,...,\, denote the
eigenvalues of the matrix Hess(f)(a). If a is a stationary point then the following
conditions determine the nature of the extreme value at a:

o If the eigenvalues A1, ..., \, are all positive then f has a local minimum at a.

o If the eigenvalues A1, ..., \, are all negative then f has a local maximum at a.

o If the eigenvalues A1, ..., \, are all non-zero, but some are positive and some are
negative, then f has a saddle point at a.

o If at least one of the eigenvalues A1, ..., \, equals zero then the test is inconclu-
sive.

Example 3.13. Let f: R?* — R be a function of class C?(R) and let a be a stationary
point of f. If the three eigenvalues of the Hessian matrix Hess(f)(a) satisfy

)\1‘{')\24‘/\3 =2 and /\1/\2>\3 =-1

then can f have a local extreme value at the point a? The answer is no. Since
A A2A3 = —1, the Second Derivative Test is not inconclusive, so we must be either in
the first, second, or third case of the test. However, since A\; A \3 is negative we cannot
be in the first case, and since A\; + Ay + A3 is positive we cannot be in the second case.
By method of elimination, we must be in the third case of the test, so a is a saddle
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point of f.

3.15 Implicit Function Theorem

In mathematics, we say that variables are in an explicit relation when one variable is
expressed directly in terms of the other variable(s). For example, an ezplicit equation
of a variable x,, in terms of the variables z1,...,x,_1 is a relation of the form

Tp = f(xla S wxnfl)?

where f is a function of n — 1 variables. In this context, we refer to z, as the de-
pendent variable and x1, ..., x,_1 as the independent variables and the function f is
the “law” that describes the relationship between z, and xy,...,x, 1. The great ad-
vantage of explicit relations is that if one knows the values of all the independent
variables 1, ..., x,_1 then it is relatively easy to calculate the values of the dependent
variable z,,.

In contrast to explicit relations, variables can also be in an implicit relation, which
means their relationship isn’t expressed explicitly in terms of one variable depending
on the others. More precisely, an implicit equation in the variables xq,...,x, is a
relation of the form

F(zy,...,z,) =c,

where F' is a function of n variables and ¢ € R is a constant. For example, the unit
circle is commonly described by the implicit equation

:172+y2:1.

Note that simple implicit equations can easily be transformed into explicit equa-
tions by isolating one variable on one side of the equation. For example, the implicit
equation x + y + z = 1 (which describes a plane in R?) can easily be tuned into the
explicit equation z = 1 — z — y using rudimentary algebraic manipulations. But if
the implicit equation is more complicated then it is often not possible to express one
variable in terms of the others by hand. In this case, we need a more sophisticated
tool, which is where the Implicit Function Theorem comes into play.

An implicit function is a function defined by an implicit equation that expresses
one of the variables, say x,, as a function of other variables, say zi,...,z, 1. Here’s
the simple example: The equation 22 + y?> = 1 of the unit circle defines y as an
implicit function of z if —1 < z < 1, and y is restricted to positive values. Under this
restrictions we have

4yt =1 <= Y= V1—a? 1

- -

implicit equation implicit function for y>0
where f(x) = v/1 — 22 is the implicit function defined by the implicit equation z2+y* =
1 in the domain {(z,y) : —1 < x < 1, y > 0}. Similarly, if y is restricted to negative
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values then we have

=1 — y=—v1—x2

—— —

implicit equation implicit function for y<0
where f(z) = —+/1 —2? is the implicit function defined by the implicit equation
2?2 + 9% = 1 in the domain {(x,y) : =1 < x < 1, y < 0}. If y = 0, or equivalently if
x =1 or x = —1, then it is impossible to express y in terms of z and so the implicit

function does not exist.

The Implicit Function Theorem tells under what conditions — and in what neigh-
borhood — an implicit function exists, which helps us deal with cases where we have
an implicit equation relating multiple variables and it’s not easy to solve explicitly for
one variable in terms of the others.

Theorem 3.9 (Implicit Function Theorem). Let n be an integer where n > 2. Let
E C R™ be an open set, and let F: E — R be a function of class C'(E). If a =
(ay,...,a,) € E and c € R is such that
oF
F(a) = d — 0
(a) =c and Z-(a) #0,

then there exist a neighborhood U C R™ ! of the point (ay,...,a,_1), a neighbor-
hood V' C R of the point a,, and a unique function f: U — V such that for all
(x1,...,2p—1) € U and all x, € V we have

F(xy,...,x,) =c = Tp = f(T1,...,2n).

The function f: U — V is called the implicit function for the equation F(xy,...,z,) =
c at the point (ay, ..., a,).

Remark 3.7. Note that the implicit function f: U — V satisfies

an = flay,...,an_1).
This follows from the assumption F(ay,...,a,) = c.

Remark 3.8. If, in the statement of the Implicit Function Theorem Theorem 3.9, we
do not assume that %(a) # 0, then the result may no longer be true, even if the other

assumptions are satisfied. For example, this is the case for the function F': R? — R
defined by F(z,y) = 2? + y* for a = (0,0).

Example 3.14. Let F': R? — R be the function defined by F(z,y) = 1 — ye®” + xev.
Since F'(0,1) = 0 and %—Z(O, 1) = —1, we know, thanks to the Implicit Function
Theorem, that there exists a real number 6 > 0 and a continuously differentiable
function f: (—9,d) — R satisfying the following two properties (see Example 3.14):
f(0) =1and F(z, f(z)) = 0 for every x € (—6,0). Since the derivative of the function
s — F(s,¢(s)) is zero, we can use the chain rule to conclude that

OF OF

E(Ov 1) + 87y<0’ l)f/(()) =0
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and therefore

, 980,1)
f(0) _825(0,1) =—1+e.

Plot of 1 - ye* + xe¥ =0

3.16 Implicit Differentiation

The technique we used at the end of Example 3.14 to compute the derivative of a
function is called implicit differentiation.

Theorem 3.10 (Implicit differentiation). Let n be an integer, where n > 2, let E
be an open subset of R", and let F: E — R be a function of class C'(E). Sup-
pose a = (ai,...,a,) and there exists exists a real number § > 0 and a function
f:B((ay,...,a,-1),0) = R of class C*(B((ay,...,an_1),0)) such that

F(.fljl, e ,.Z'nfl,f(l'l, c. 71'7171)) =0
holds for all (z1,...,x,-1) € B((a1,...,a,-1),0). Then

oF
af 6x,-(a> .
——(a1,...,ap_1) = —5p——, Vi=1,...,n—1.
O; ()

3.17 Tangent Line to Implicit Curves

An implicit curve is a plane curve defined by an implicit equation relating two variables,
commonly x and y. For example, the unit circle is defined by the implicit equation
22 + 32 = 1. In general, every implicit curve is defined by an equation of the form

F(z,y)=c
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for some function F' of two variables and some constant c. Hence an implicit curve can
always be considered as the level curve of a function in two variables (cf. Definition 2.2).
In this context, “implicit” means that the equation is not expressed explicitly in either

one of the variables of the function.
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Figure 3.9: The implicit curve sin(xz +y) — cos(zy) + 1 = 0 plotted as a graph in 2
dimensions (left) and as a level curve of the surface z = sin(z + y) — cos(xy) + 1 in 3
dimensions (right). This example also showcases the possibly complicated geometric

structure of an implicit curve.

Let D C R? be an open set, F': D — R a function of class C'(D), ¢ € R, and
consider the implicit curve defined by the equation

F(z,y)=¢, (x,y)€ D.

The implicit function theorem (Theorem 3.9) describes conditions under which the
above equation can be solved in terms of x and/or y. This theorem is key for the

computation of essential geometric features of implicit curves such as tangents, normal

vectors, and curvature. In particular, the Implicit Function Theorem says that if

(a,b) € D such that

OF
F(a,b) =c¢ and o (a,b) #0,

then there exists a function f such that for all points (z,y) € D with ||(z,y) — (a,b)||

sufficiently small, we have F(z,y) = ¢ <= y = f(z). This leads to two crucial
insights:

« Equivalence between the level set and the graph of f: If the point (z,y)

is sufficiently close to (a, b) then it satisfies the equation F(z,y) = c if and only

if it lies on the graph of the function f. Formally, this relationship is expressed

as:

(#,y) € Le(F) <= (2,y) € G(f),
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where L.(F) = {(z,y) € D : F(x,y) = ¢} denotes the level set of F" at height c,
and G(f) = {(z, f(x)) : x € dom(f)} represents the graph of the function f.

o Tangent line equation at a point on the graph of f: Recall from your
Analysis T course that the tangent to the graph of f at the point (a,b) is given
by the equation

y=fla)+ f'(a) - (x —a).
By implicit differentiation (Theorem 3.10) we know that

oF
flay= -2
Ty(a7 b)
which allows us to rewrite the equation of the tangent line as
% (a,0)
y = fla) - 5% (2 —a).

7y (@,0)

Finally, using f(a) = b, we can express the tangent line of F' at the point (a,b)
in terms of the gradient as

VF(a,b)- (i - Z) =

Equation of the tangent line to an implicit curve. Let D C R? be an open
set, F': D — R a function of class C'(D), and ¢ € R a real number. Consider the
implicit curve defined by the equation F(x,y) = c. If (a,b) is a point on this curve
with VF(a,b) # 0 then the equation of the tangent line to this implicit curve at
the point (a,b) is

Example 3.15. Given ¢ > 0, let us find the tangent line to the circle 22 + 3? = ¢ at
a point (a,b) on this circle.

Letting F(x,y) = 2? + y?, the level set L.(F) is a circle of radius y/c. For a point
(a,b) such that a® + b* = ¢ and b # 0, the condition %—i(a, b) = 2b # 0 holds. Thus,
near (a,b), the level set L.(F') corresponds to the graph of the function z — f(x),
defined as f(z) = Ve — 22. If a® + b? = ¢ with b = 0, we can swap the roles of z and
Y, as then

OF
87(0/, b) = 2a % 0.
In either one of the two cases, the gradient of F'is VF(z,y) = (2z,2y) and hence

VF(a,b) = (2a,2b). Therefore, the equation of the line through the point (a,b) and
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tangent to the circle 22 + y? = ¢ is

(2a, 2b) - ('Z - Z) = 0.

Using a? + b? = ¢, this can be simplified to

ax + by = c.

3.18 Tangent Plane to Implicit Surfaces
An implicit surface is a surface in R? defined by an equation of the form
F(x,y,z)=d,

where F' is some function depending on three variables and d is some constant real
number. Implicit surfaces are the same as level surfaces of functions in three variables.
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Figure 3.10: The surface that is depicted above is defined by the implicit equation
2y(y? — 32?)(1 — 22) + (22 + y*)? — (922 — 1)(1 — 2?) = 0.

Let D C R? be an open set, F': D — R be a function of class C'(D), and (a, b, c) €
D with d € R such that

F(a,b,c) =d and gF(a, b,c) #0.
z

The Implicit Function Theorem guarantees the existence of a differentiable function f
such that for all

c¢= f(a,b) and F(x,y, f(z,y)) =d forall (z,y) sufficiently close to (a,b).
« First consequence: For any (z,y, z) sufficiently close to (a, b, ¢), we have :
F(z,y,2) =d <= z = f(z,y).

In other words, locally around the point (a,b,c) the level set Ly(F) and the
graph G(f) coincide.
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» Second consequence: As we have learned in Section 3.4, the equation of the
tangent plane to the graph of f at (a,b) is given by

= @)+ @b~ a) + G0,y - )
On the other hand, using implicit differentiation (Theorem 3.10) we have
OF (0 b 9 (4, b, ¢
g(a’ ) = _M and g(a’ ) = —;%()-
Oz S (a,b,c) dy S-(a,b,c)
So we can rewrite the equation of the tangent plane in terms of the gradient of
F as
r—a
VF(a,b,c)- y—b] =0,
z—c

which is the equation of the tangent plane to the graph of f at the point (a, b, ¢).
Thus, VF(a,b, ) is orthogonal to the tangent plane of the graph of f at (a, b, c).

Equation of the tangent plane to an implicit surface. Let D C R? be an
open set, F': D — R a function of class C'(D), and d € R a real number. Consider
the implicit curve defined by the equation F(x,y,z) = d. If (a,b,c) is a point on
this curve with VF(a,b,c) # 0 then the equation of the tangent plane to this
implicit surface at the point (a, b, ¢) is

T —a
VF(a,b,c)- |y—b]| =0.
z—c

Example 3.16. Let F(z,y, z) = 2? +y? + 2? and consider the level set F(z,y,2) = 1,
which describes a sphere of radius 1. For a point (g, o) such that 22 + 32 < 1, let
29 = /1 — 2% —y2. We have F(zg,y0,2) = 1 and %—f(mo,yo,zo) = 229 # 0. The
equation of the tangent plane at the point (xg, yo, 20) is given by:

T — Xy 2xg T — o
VF(xo,90.20) - |Y—% | =0 <= |20 |- |y—w | =0.
zZ— 2 229 Z— 2

Simplifying the expression and using zZ + y2 + 22 = 1 we get the euqation of the
tangent plane as

ToT + Yoy + 202 = 1.
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3.19 Method of Lagrange Multipliers — single con-
straint

Constrained optimization is the process of optimizing a function with respect to some
variables in the presence of constraints on those variables. The Method of Lagrange
Multipliers is a powerful technique for constrained optimization. It lets you find the
maximum or minimum of a multivariable function subject to an implicit constraint
equation. While it was originally developed to solve physics equations, today it finds
applications in all sciences, especially in machine learning. To motivate the subject
matter, let us first look at a simple constrained optimization problem that you are
probably familiar with from your high school mathematics education.
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Example 3.17. For a rectangle whose perimeter is 20 meters, find the dimensions
that will maximize the area.

Solution: Let x denote the width and y the height of the rectangle in question. Both
the area A(z,y) = xy and the perimeter P(z,y) = 2z + 2y of the rectangle are
functions in the two variables x and y. The constrained optimization problem can
now be summarized as:

Maximize : A(z,y),
Constraint : P(z,y) = 20.

There is a simple method, using single-variable calculus, for solving this problem.
Since the implicit equation 2x 4 2y = 20 can easily be recast as an explicit equation
y = 10 — z, we can substitute this explicit formula into A(z,y) to get a new function
f(z) = A(x,10 — 2) = 10z — 2. This is now a function of x alone, so we just have to
maximize the function f(z) = 10x — 2% on the interval [0, 10]. Since f'(z) = 10 — 2z
we see that x = 5 is a stationary point for f(z). Since f”(5) = —2 < 0, the Second
Derivative Test tells us that x = 5 is a local maximum for f, and hence x = 5 must
be the global maximum on the interval [0, 10] (since the interval is compact and the
function f equals 0 at the endpoints of the interval). So since y = 10 — x = 5, then
the maximum area occurs for a rectangle whose width and height are both equal to 5
meters.

Notice in the above example that the ease of the solution depended on being able
to solve the constraint equation for one variable in terms of the other. However, this is
not always possible, especially when the constraint equation is more complicated and
when there are more variables involved. In this case, the hands-on task of solving the
constraint equation in terms of one of the variables is replaced by an application of
the Implicit Function Theorem.

The general type of constrained optimization problem that we are interested in is:

Maximize (or minimize) : f(z1,...,Z,),

Constraint : g(zq,...,z,) = c.

The function being maximized or minimized, f(z1,...,x,), is called the objective func-
tion. The function, g(x1, ..., z,), whose level set at height ¢ represents the constraint,
that is, all the values allowed to be considered for the optimization, is called the con-
straint function. Points (z1,...,z,) which yield maxima or minima of f(xy,...,x,)
with the condition that they satisfy the constraint equation g(x1,...,z,) = c are called
constrained maximum points or constrained minimum points, respectively.

A constrained optimization problem in two variables has an illustrative geomet-
ric interpretation. Indeed, if the input space is two-dimensional, then the graph of
the objective function f(z,y) is a 3 dimensional surface and the constraint equation
g(x,y) = cis a curve in 2 dimensions. We can projected the curve (in red) onto
the surface (in blue) as shown in Fig. 3.11. The goal of the constrained optimization
problem is simply to find the highest (resp. lowest) point on that red line.
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Jx.y)

X

Figure 3.11: Constrained optimization problem in two variables.

In Fig. 3.11 we see that the highest point on the red line is the point where the
red line is tangent to a level curve of f(x,y). But the red line is itself a level curve
coming from the function g(x,y). So the core idea is to look for points where the level
curves of f(z,y) and g(x,y) are tangent. This is the same as finding points where the
gradient vectors Vf and Vg are are parallel to each other (see Fig. 3.12). In other
words, there exists some A € R such that Vf = AVg.

y

e )
Constraint function

glx,y) =0 Cony
: X Oup Ii

Figure 3.12: Maximization of function f(x,y) subject to the constraint g(x,y) = 0.
At the constrained local extreme value, the gradients of f and g, namely V f(z,y) and
Vyg(z,y), are parallel.

In general, the Lagrange multiplier method for solving constrained optimization
problems can be stated as follows.

Theorem 3.11 (Lagrange Multiplier Theorem). Consider an open set E C R", two
functions f,g: E — R of class C*(E) and let ¢ € R be a constant. If the function f
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restricted to the level set {x € E : g(x) = c} achieves a local extreme value at a point
a and additionally Vg(a) # 0 then there must be a scalar number A € R such that
Vf(a) = AVg(a). The number X is called the Lagrange multiplier.

Example 3.18. For a rectangle whose perimeter is 20 m, use the Lagrange multiplier
method to find the dimensions that will maximize the area.

Solution: As we saw in Example 3.17, with x and y representing the width and height,
respectively, of the rectangle, this problem can be stated as:

Maximize : A(x,y) = zy
Constraint equation : P(z,y) = 2z + 2y = 20

In light of Theorem 3.11, the above can only have a solution when VA(z,y) =
AV P(z,y) for some \. Since VA(z,y) = (y,z) and VP(z,y) = (2,2), we need to
solve the system of equations

y = 2\,
T = 2\

The general idea is to solve for A in both equations, then set those expressions equal
(since they both equal A) to solve for z and y. Doing this we get

Y x
2 2 ey

Substituting either of the expressions for x or y into the constraint equation, we obtain
20 = g(x,y) = 2242y = 2x+2x = 4o — x=5 — y=>~b.

Hence there must be a maximum area, since the minimum area is 0 and f(5,5) =
2S > 0, so the point (5,5) that we found (called a constrained critical point) must be
the constrained maximum. Therefore the maximum area occurs for a rectangle whose
width and height both are 5 meters.

Example 3.19. Let us find the constrained extreme values of the expression x + z
subject to the constrained g(x,vy, 2) = 2 + y*> + 22 = 1. In other words,

Maximize (and minimize) : f(z,y,2) =z + z,

Constrained equation : g(z,y,z) = 2% +y* + 2% = 1.

By Theorem 3.11, the strategy is to look for solutions to the equation Vf(z,y,z2) =
AVyg(z,y,z). Since V f(z,y,2) = (1,0,1) and Vg(x,y, z) = (22, 2y, 2z), we have

1 = 2\
0 = 2\y
1 = 2z

The first equation implies A # 0 (otherwise we would have 1 = 0), so we can divide
by A in the second equation to get y = 0 and we can divide by A in the first and
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third equations to get x = % = 2. Substituting these expressions into the constraint
equation g(z,y,2) = 22 + y? + 22 = 1 yields the constrained critical points (%, 0, %)
and (\_/1 0, \_/1) Since f( 1 ,%) > f( —1.0, _1), and since the constraint equation
?+yi+ =1 descrlbes a sphere (Whlch is bounded) in R3, then (\f’ 0, %) is the

constrained maximum point and ( ,0, f) is the constrained minimum point.
Example 3.20. We aim to prove that for any m-tuple of positive real numbers
(v, ..., ), the following inequality holds:

a1+ ...+ oy
—m .

g Qg S

In other words, the geometric mean of a finite number of elements from R? is never
greater than their arithmetic mean.

Given an arbitrary m-tuple of positive real numbers
a=(a,...,0pm),
let us consider the set
E={(z1,...,2p) €ER" 12y 2 0,...,2, >0}
and define two functions f,g: EF — R by

flzy, .o xm) = oy -0 Ty,

g1, ... ) =214+ ...+ Ty — [, where =01+ ...+ qp.
Given that
Ey={(z1,...,2p) €E|g(x1,...,2,) =0}

is a compact subset of R”™ and f is continuous, there exists at least one element
a = (ay,...,ay,) in By where the restriction of f to Fj achieves its maximum. The
method of Lagrange multipliers asserts that this maximum, referred to as a constrained
maximum, occurs in the following cases:

1) ar-...-ay=0,

2) aj-...-a, >0 and there exists a real number A such that

of 99\ _
6:1:1( )+)\8£C1( )_07

of

0T,

5’9

——(a) + \—=—

In the first case, we have f(a) = 0. Observing that (%,,%) € E; and that
f(£,...,2) > 0, we conclude that the first case does not occur for a point a where

m’ ’'m
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the constrained maximum is achieved. In the second case, f is indeed of class C! in
the vicinity of @ and there exists a real number A such that

1 way-... a,
7u+)\:0’

m aq

1 way-... a,
7u+)\:0.

m A

Therefore, by solving this system and taking into account that a; + ...+ a,, = 3, we
deduce that

R
ay = ... =0ap = —,
m
and thus the constrained maximum is achieved at a = (%, ceey %) € F;. Finally, since
a=(o,...,qn) € B, we can state that

o - a = fla) < f(a) = R/ay - ay, =

Example 3.21. Consider a situation in which Vg(zo,y0) # 0 is not satisfied, and
thus the theorem cannot be applied to the functions f(x,y) = 2>+ y and g(x,y) = 3.
Clearly, f admits a local minimum at (z,yo) = (0,0) under the constraint g(xg, yo) =
0, since f(z,0) = 2%

Moreover, we have

Vf(ﬂﬁ,y):( ) ) Vg(x,y)=<20y>,

vio.0 = (1) vaoo ()

hence there exists no A € R such that
V£(0,0) = AVg(0,0).
Here, Vg(xo,y0) # 0 is not satisfied.
0 ) for all (z,y) € R? st. g(z,y) = 0.

~—

In fact, Vg(z,y) = ( %

Intuitive Explanation for the Theorem: We argue by contradiction and
assume that the calculation is false. That is, V f(z0, yo) is not a multiple of Vg(xq, yo)
(in particular V f(zo,v0) # 0). Fix ¢ = f(xo,40) € R. Since V f(z0,yo) is orthogonal
to the level set L.(f) at (zo,vo), and Vg(xg,yo) is orthogonal to the level set Ly(g) at
(20, Y0), we deduce that L.(f) crosses Lo(g) without being tangent to it. This implies
that for £ > 0 small enough, Ly(g) also crosses L.ic(f) and L._.(f). In particular, f
does not have a local extremum at (zq, yo)-
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Example 3.22. Consider a box without a cover.

Volume = abe,
Surface Area = ab + 2ac + 2bc.

Find all those boxes of maximal volume for a given surface area S > 0. We put
x=ab,y =ac,z =be, so f(x,y,z) = \/Tyz represents the volume.

g(x,y,z) =x+2y+22—5=0, E:{(m,ywz)ER3:x>O,y>O,Z>O}.

For z,vy, z, we recover a,b,c as: a = ,/%,b = 1/””—yz,c = ,/%. Moreover, zyz = 0 &
abc = 0 < zero volume (not maximal). We look for (xg, yo, 2z0) € E such that f reaches
its maximum under the constraint g(x,y, z) = 0. Since {(z,y,2) € E: g(z,y,z) = 0}
is compact (closed and bounded), and f is continuous, such a maximum (z, Yo, 2o)

exists.
Observe, moreover, that Vg(z,y, z) = (1,2,2) # 0. We then search for (z,y,z) € E
and A € R such that:

{Vf(m/,Z) = A\Vy(z,y,2)
g(x7 y? Z) = 0

That is, we have:

L A
z =
2, /xyzy
1
rz =2\

2, /a:yzxy -

r+2y+2:—-5=0

Substituting, we get:

xz =2yz (1)
xy = 2yz (2)
r+2y+22—-5=0 (3)
From equations (1) and (2), we obtain y = § and z = 3. Substituting into (3), we
have:
S
r+r+r—-5S=0 = =g
Thus,

S S S s S S 1/88
:I:—g, Y 6 Z—g, and f(x,y,z)_m_6\/;>0_

For all points (x, y, z) on the boundary of E, denoted as OF, the function f satisfies



3.19. METHOD OF LAGRANGE MULTIPLIERS — SINGLE CONSTRAINT 75

flz,y,z) =0< %\/%3. Therefore, the final solution is given by the point (xg, 4o, z0) =
(ﬁ S
3767

Cﬂ\tl)
~—

In terms of variables (a, b, c), we have:

R RS







Chapter 4

Parametric Curves in R"

We now turn our attention to a particularly important case of vector-valued functions,
where the domain is an interval of R and its range is a subset of R™ with n > 2, in
which case there exist specific notions and terminology.

Definition 4.1 (Parametric Curve). Let n > 1 be an integer. Given a non-empty
interval I C R, a (vector-valued) function of the from f: I — R" is called a parametric

curve in R".

Given a parametric curve

fi(t)
f(t) = o, tel,
fu(t)
the functions fi, ..., f, are called the component functions of f. The interval [ is called

the parameter interval of the curve and the variable ¢ is the parameter. The image of

f
Imf={f(t):tel}

is also called the trace of f. Parametric curves are often used to describe the path of
a moving particle in space, where the particle’s position, represented as a point in R?,
varies with a single time-parameter ¢. The image of the parametric curve corresponds
to the trajectory “traced” by the moving particle, thus earning the name trace.

Example 4.1 (Helix). For r > 0 and c € R let f: R — R3 be given by

77
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Figure 4.1: Helix

Example 4.2 (A non-injective curve). Let f: R — R? be the function

ﬂw=<§:i>

We have f(—1) = f(1) = 0 and

Example 4.3. Let us find a parametric curve whose trace represents the curve of
intersection of the cylinder 2% + y* = 1 and the plane y + 2z = 2 (see Fig. 4.2).

Let C' denote the parametric curve that we are seeking. The projection of C' onto
the zy-plane is the circle 22 + y? = 1, z = 0. The parametrization of this circle is
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given by

x(t) = cos(t), y(t) = sin(t), t €10,2m).
From the equation of the plane, we have

z(t) =2 —y(t) = 2 — sin(t), t € 0,2m).

So we can write parametric function tracing the curve C as
) = [y |, tefo.2m),

where
x(t) = cos(t), y(t) =sin(t), and =z(t) =2 —sin(t).

The arrows on the right in Fig. 4.2 indicate the direction in which C' is traced by the
parametric curve r(t) as the parameter ¢ ranges from 0 to 27.

C (—L,0,2)

0,1, 1)

Figure 4.2

4.1 Continuity and Differentiability of Parametric
Curves

Definition 4.2 (Continuity). A parametric curve f: I — R" is continuous at ty € I
if and only if, for every real number € > 0, there exists a real number § > 0 such that

forall t € I,
=t <6 — [IE() — f(to)2 <e.

If £: I — R™ is continuous at every ¢ € I then f is also referred to as a path in R™.
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Proposition 4.1. Suppose f(t): I — R" is a parametric curve in R" and

fi(?)
ft)=|
fn(t)
are its components functions. Then f(t) is continuous at ty if and only if all of its
component functions fi(t), ..., f.(t) are continuous at ty.

Definition 4.3 (Differentiability). We say that the curve f is differentiable at t, € 1
and that its tangent vector (or velocity vector) at tg is f'(ty) € R™ if

. £(t) — £(to)

—f'(t
t—to (to)

=0.

t—to 9

If f is differentiable at ¢y and f’(t) # O then the vector

1

[T o)

is called the unit tangent vector.

Proposition 4.2. Suppose f(t): I — R" is a parametric curve in R" and

fi(t)
f) =1 :
fn(t)
are its components functions. Then f(t) is differentiable at ty if and only if all of its
component functions fi(t), ..., f.(t) are differentiable at ty. In this case,
fi(to)

L) = ()= |

dt
fa(to)

The next theorem shows that the differentiation formulas for real-valued functions
have their counterparts for parametric curves.

Theorem 4.1. Suppose u and v are differentiable parametric curves, c is a scalar,
and g is a differentiable real-valued function in one variable. Then:

Lo ghu(t) +v(t)] =w'(t) + v'(t)
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4. du(t) - v(t)] = u'(t) - v(t) +u(t) - v/(t) (Product Rule for Dot Products)

5. glulg(t))] = w'(g(t))g'(t) (Chain Rule)

Definitions 4.1. Let f: I — R" be a parametric curve with component functions
fis---, fn- Let kK > 1 be an integer. If the derivatives f](m) exist and are continuous on
I forall 1 <m < kand all 1 < j < n, then the curve f is said to be of class C*(I). If
f is of class C*(I) for all k > 1, it is said to be of class C*°(I).

Example 4.4. Consider the curve
v =1t -1, =% 2 =cos(3t).
Let us find the equation of the tangent line at ¢ = 1.

First, we compute the Velocity Vector:

d d d
v(t) = <dt(t3 — 1), %e%, pr cos(3t)> = (3t* — 1,2e*, —3sin(3t)).

At t = 1, this yields
v(1) = (3(1)® — 1,2¢% —3sin 3) = (2,2¢?, —3sin 3).
We also need the point of tangency, which is
P = (1> —1,e®™ cos(3(1))) = (0, €2, cos 3).
We can now write the tangent line equations (in parametric form) as
xr =0+ 2s, y:(32—|—2623, z=1c0s3 —3sin3 - s.

Thus, the tangent line at (0, €2, cos 3) follows the direction (2, 2%, —3sin 3).

4.2 Motion in Space: Velocity and Acceleration

We can use vector-valued functions to represent physical quantities, such as velocity,
acceleration, force, momentum, etc. For example, let the real variable t represent time
elapsed from some initial time (such as ¢ = 0), and suppose that an object of constant
mass m is subjected to some force so that it moves in 3-dimensional space, with its
position (x,y, z) at time ¢t a function of ¢. That is, x = z(t), y = y(t), z = 2(t) for
some real-valued functions z(t), y(t), z(t). Call r(t) = (z(t),y(t), 2(t)) the position
vector of the object. We can define various physical quantities associated with the
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object as follows:

()
position: r(t) = ygt)
)

2(t)
velocity: v(t) =1(t) =r'(t) = Cciil;
'(t)
=Yt
(1)
acceleration: a(t) = v(t) = v'(t) = Cji::
=i(t) =r"(t) = th
‘T”(t)
=1y"(t)
z”(t)
momentum: p(t) = mv(t)
forces F(6) = p(t) = /(1) = (Newton's Sccond Law of Motion)

The magnitude ||v(¢)||2 of the velocity vector is called the speed of the object. Note that
since the mass m is a constant, the force equation becomes the familiar F(t) = ma(t).

Example 4.5. Let us show that if ||r(¢)||2 = ¢ (a constant) then r'(¢) is orthogonal
to r(t) for all ¢t.

To prove this claim, we will simply use the product rule for dot products (cf. The-
orem 4.1). Since

r(t) r(t) =[x = ¢
and ¢? is a constant, we have

jt(r(t) -x(t)) = 0.

By the product rule, the left hand side is

jt(r(t) cx(t)) =v/(£) - v(t) + (t) - x'(£) = 20'(¢) - x ().

Thus r'(t) - r(t) = 0, which says that r'(¢) and r(¢) are orthogonal.
Example 4.6. An object with mass m that moves in a circular path with constant

angular speed w has position vector r(t) = (a cos(wt), asin(wt)). Find the force acting
on the object and show that it is directed toward the origin.
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To find the force, we first need to know the acceleration:

ww:uw:(ﬂwmmv

aw cos(wt)

—aw? cos(wt)
—aw?sin(wt) |’

a(t)=v/'(t) = (
Therefore Newton’s Second Law gives the force as

F(t) = ma(t) — —muw? <“ COS(“”) |

a sin(wt)

Notice that F(t) = —aw?r(t). This shows that the force acts in the direction opposite
to the radius vector r(¢) and therefore points toward the origin. Such a force is called
a centripetal (center-seeking) force.

4.3 Arc Length

Definition 4.4 (Length of a Curve Arc). Let there be a curve f: I — R" of class
CY(I) and let @ < b € I. The arc length of the curve f: [a,b] — R" is defined as

b
L) = [ 1€, dr
Given that the interval [a,b] is closed and bounded, L(f) < +o0.

Example 4.7. In R?, consider the circle with center ¢ = (¢, ¢p) and radius r > 0
parameterized by

(o) (a n rcos(a@)) s (cos(a@)) e

co + rsin(ad) sin(af)

where a > 0 is a constant. The length of the curve arc f: [0,27/a] — R? is

27 /a
/ radf = 2mr.
0

Example 4.8. Given a continuously differentiable function g: I — R, consider its
parameterized graph:

f(t) = (g(i&)) , tel.

For a < b € I, the arc length of the graph is therefore given by

[IE@la= [V @02 ar

Proposition 4.3 (Derivative of an Integral Depending on a Parameter). Let a < b
be two real numbers, I an open interval, and f: [a,b] x I — R a continuous function
whose partial derivative with respect to the second variable exists and is continuous
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on [a,b] x I. Then, the function F': I — R defined by

F(t) :/abF(x,t)dx

is continuously differentiable on I and, moreover, for every t € I, we have:

F(t) = /ab ‘g{(x,t) dz.

Proposition 4.4. Let a,b: R — R be of class C'(R), and f: R? — R of class C*(R?),
and define F(t) by

b(t)
F(t) = / , J@ i

Then F' is continuously differentiable on R and
/ / / b(t) 8f
F'(t) = F(b(t),t) - ¥ (1) — F(a(t),t) - d'(t) +/() S, da.
a(t

Example 4.9. 1) Given F(t) = [ %zm) dx, let us calculate F’ (i) First, note that
f(x,t) is of class C*'(R?) (which needs verification!). So it follows that
) = /71’ cos(tx)x QP (1) = /rr cos(tx)x e
0

x 0 x
1

= L sin(tx)

T=T

=0
=7 sin(7t).
Hence, we have
1 1 2
P () s (o g) =1 =2

2) Next let us find F’ (i) when F(t) = 52 % dx. We have
1 1 =t
F'(t) = sin(t- %) - (2t) + L sin(ta:)]

t2 =0

= ?sin(t‘g) + 1Sin(t3> = ?sin(t‘g).

1 1
F <> = 12sin (> )
4 64

This now gives
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